Submitter Variables Constraints Density Status Group Objective MPS File
Sascha Kurz 6143 2065 4.2502e-02 hard 8div NA 8div-n59k10.mps.gz

Projective binary 8-divisible linear block codes A linear block code is called 8-divisible if the weights of its codewords are divisible by 8. It is called projective if there are no duplicate columns in the generator matrix. The possible lengths of 8-divisible linear block codes have been classified except for length n=59, where it is undecided whether such a linear code exists. The possible dimensions satisfy \(10 \le k \le 20\). Instance 8div_n59_kXX contains the corresponding feasibility problem. Projective binary 8-divisible linear block codes occur as hole configurations of so-called partial solid spreads in finite geometry. Binary 4-divisible linear block codes have applications in physics.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 6143 6133
Constraints 2065 2055
Binaries 6138 6128
Integers 5 5
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.0425020 0.0423715
Nonzeroes 539151 534021
Constraint Classification Properties
Original Presolved
Total 2068 2058
Empty 0 0
Free 0 0
Singleton 10 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 1023 1023
Set Packing 0 0
Set Covering 0 0
Cardinality 1 1
Invariant Knapsack 0 0
Equation Knapsack 1023 1023
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 3 3
Mixed Binary 0 0
General Linear 8 8
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.91169
Constraint % 0.0486618 0.0737988 0.0486618 20.4380
Variable % 0.0813935 0.1225000 0.0813935 33.5829
Score 0.53250

Best Known Solution(s)

No solution available for 8div-n59k10 .

Similar instances in collection

The following instances are most similar to 8div-n59k10 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Status Objective
8div-n59k11 12287 12282 5 0 4114 2126860 Sascha Kurz 8div hard Infeasible
8div-n59k12 24575 24570 5 0 8211 8448020 Sascha Kurz 8div hard Infeasible
neos-3045796-mogo 11016 11016 0 0 2226 44442 Jeff Linderoth neos-pseudoapplication-22 easy -175
neos-952987 31329 31329 0 0 354 90384 NEOS Server Submission neos-pseudoapplication-22 open
brazil3 23968 23874 94 0 14646 133184 George Fonseca timetabling easy 24

Reference

@article{heinlein2017classifying,
  title   =  {Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6},
  author  =  {Heinlein, Daniel and Honold, Thomas and Kiermaier, Michael and Kurz, Sascha and Wassermann, Alfred},
  journal =  {Designs, Codes and Cryptography},
  note    =  {arXiv preprint arXiv:1711.06624},
  year    =  {to appear},
  doi     =  {10.1007/s10623-018-0544-8},
}

Last Update Nov 17, 2018 by Gregor Hendel
generated with R Markdown
© 2018 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint