germanrr

benchmark decomposition benchmark_suitable precedence variable_bound set_partitioning general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Q. Chen 10813 10779 1.50615e-03 easy 47095869.649 germanrr.mps.gz

Model from a German railroad company. Solved in June 2013 by CPLEX 12.5.1 (24 threads) in about 5.2 hours.

Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 10813 10770
Constraints 10779 5525
Binaries 5323 5288
Integers 5251 5481
Continuous 239 1
Implicit Integers 0 230
Fixed Variables 43 0
Nonzero Density 0.00150615 0.00286042
Nonzeroes 175547 170207
Constraint Classification Properties
Original Presolved
Total 10779 5525
Empty 0 0
Free 0 0
Singleton 5254 0
Aggregations 0 0
Precedence 1 1
Variable Bound 5285 5285
Set Partitioning 0 8
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 119 0
General Linear 120 231
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 3.720407
Constraint % 0.0180995 0.0182167 0.0180995 0.0361991
Variable % 0.0185563 0.0186164 0.0185563 0.0278345
Score 0.956563

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 47095870 47095870 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to germanrr in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
rout easy 556 300 15 241 291 2431 MIPLIB submission pool 1077.56 decomposition benchmark_suitable variable_bound set_packing integer_knapsack general_linear
neos-3075395-nile easy 26928 1728 0 25200 27756 102672 Jeff Linderoth neos-pseudoapplication-50 6021720 decomposition numerics aggregations variable_bound set_packing invariant_knapsack knapsack mixed_binary
Test3 easy 72215 33143 0 39072 50680 617867 MIPLIB submission pool 2673520.21135 numerics aggregations variable_bound set_partitioning binpacking knapsack mixed_binary
npmv07 easy 220686 1880 0 218806 76342 859614 Q. Chen 1.0481e+11 numerics aggregations variable_bound mixed_binary
n3705 open 10000 5000 0 5000 5150 20000 J. Aronson n37 1264759* decomposition variable_bound mixed_binary

Reference

@misc{coral,
 key = {zzz coral},
 note = {http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/},
 title = {{COR@L} {MIP} {I}nstances},
 year = {2010}
}

Last Update Mär 19, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint