Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 227535 457985 1.18357e-05 hard gfd-schedule 1 gfd-schedulen180f7d50m30k18.mps.gz

Linearized Constraint Programming models of the MiniZinc Challenges 2012-2016. I should be able to produce versions with indicator constraints supported by Gurobi and CPLEX, however don’t know if you can use them and if there is a standard format. These MPS were produced by Gurobi 7.0.2 using the MiniZinc develop branch on eb536656062ca13325a96b5d0881742c7d0e3c38

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 227535 149415
Constraints 457985 297065
Binaries 192408 145675
Integers 2025 1987
Continuous 33102 1753
Implicit Integers 0 162
Fixed Variables 31552 0
Nonzero Density 1.18357e-05 1.85317e-05
Nonzeroes 1233370 822546
Constraint Classification Properties
Original Presolved
Total 457985 297065
Empty 0 0
Free 0 0
Singleton 38 0
Aggregations 41507 10157
Precedence 102946 66488
Variable Bound 43777 38276
Set Partitioning 447 1200
Set Packing 0 0
Set Covering 0 0
Cardinality 33060 32277
Invariant Knapsack 16624 16563
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 66958 4066
General Linear 152628 128038
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components
Constraint %
Variable %
Score

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 1 1 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to gfd-schedulen180f7d50m30k18 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Status Objective
oocsp-racks030e6cci 50862 32783 18079 0 92737 232944 Gleb Belov oocsp-racks easy 0
cryptanalysiskb128n5obj16 48950 47830 1120 0 98021 292875 Gleb Belov cryptanalysis easy 0
cryptanalysiskb128n5obj14 48950 47830 1120 0 98021 292875 Gleb Belov cryptanalysis hard Infeasible
oocsp-racks030f7cci 50859 32779 18080 0 92792 233170 Gleb Belov oocsp-racks easy Infeasible
l2p12 11786 10906 590 290 21315 59629 Gleb Belov l2p easy 5

Reference

@Inbook{Belov2016,
author="Belov, Gleb
and Stuckey, Peter J.
and Tack, Guido
and Wallace, Mark",
editor="Rueher, Michel",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
isbn="978-3-319-44953-1",
doi="10.1007/978-3-319-44953-1_4",
url="http://dx.doi.org/10.1007/978-3-319-44953-1_4"
}

Last Update Nov 19, 2018 by Gregor Hendel
generated with R Markdown
© 2018 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint