Submitter Variables Constraints Density Status Group Objective MPS File
Toni Sorrell 2001 1500 8.44578e-02 open supportvectormachine 18121.63800478* gsvm2rl11.mps.gz

Suport vector machine with ramp loss. GSVM2-RL is the formulation found in Hess E. and Brooks P. (2015) paper, The Support Vector Machine and Mixed Integer Linear Programming: Ramp Loss SVM with L1-Norm Regularization

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 2001 2001
Constraints 1500 1500
Binaries 500 500
Integers 0 0
Continuous 1501 1501
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.0844578 0.0844578
Nonzeroes 253500 253500
Constraint Classification Properties
Original Presolved
Total 1500 1500
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 500 500
Variable Bound 500 500
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 500 500
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.699838
Constraint % 0.133333 0.133333 0.133333 0.133333
Variable % 0.099950 0.099950 0.099950 0.099950
Score 0.666000

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 18121.64 18121.64 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to gsvm2rl11 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Status Objective
gsvm2rl12 2001 500 0 1501 1500 253500 Toni Sorrell supportvectormachine open 22.12011638092*
gsvm2rl9 801 200 0 601 600 41400 Toni Sorrell supportvectormachine open 7438.181167768*
gsvm2rl5 401 100 0 301 300 10700 Toni Sorrell supportvectormachine open 5.4230535252*
gsvm2rl3 241 60 0 181 180 4020 Toni Sorrell supportvectormachine easy 0.33652753
neos-4960896-besbre 6149 1809 0 4340 14793 98690 Jeff Linderoth neos-pseudoapplication-59 easy Unbounded

Reference

@article{hess2015support,
  title={The Support Vector Machine and Mixed Integer Linear Programming: Ramp Loss SVM with L1-Norm Regularization},
  author={Hess, Eric J and Brooks, J Paul},
  year={2015}
}

Last Update Nov 19, 2018 by Gregor Hendel
generated with R Markdown
© 2018 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint