gus-sch

decomposition aggregations precedence variable_bound set_packing set_covering cardinality invariant_knapsack integer_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Alexandra M. Newman 5475 5984 1.01137e-03 easy -1167 gus-sch.mps.gz

course scheduling model

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 5475 2258
Constraints 5984 2585
Binaries 2736 1924
Integers 2736 331
Continuous 3 3
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00101137 0.00232417
Nonzeroes 33135 13566
Constraint Classification Properties
Original Presolved
Total 5998 2610
Empty 0 0
Free 0 0
Singleton 35 0
Aggregations 48 46
Precedence 0 1596
Variable Bound 5473 657
Set Partitioning 0 0
Set Packing 0 37
Set Covering 0 47
Cardinality 2 2
Invariant Knapsack 48 41
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 120 89
Mixed Binary 116 2
General Linear 156 93
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 3.033826
Constraint % 0.0771307 0.0821657 0.0771307 0.192827
Variable % 0.0883002 0.0921838 0.0883002 0.176600
Score 0.889957

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 -1167 -1167 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to gus-sch in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
comp08-2idx easy 11554 11487 67 0 12536 51608 Matias Sørensen coursetimetabling 37 decomposition benchmark_suitable precedence variable_bound set_packing cardinality invariant_knapsack mixed_binary general_linear
mkc hard 5325 5323 0 2 3411 17038 J. Kalagnanam, M. Dawande -563.8460100132 decomposition precedence variable_bound set_packing invariant_knapsack binpacking mixed_binary
qiu easy 840 48 0 792 1192 3432 Y. Chiu, J. Eckstein -132.87313695 benchmark_suitable precedence variable_bound mixed_binary
sct5 open 37265 23004 0 14261 13304 147037 Siemens sct -228.1172303718* decomposition aggregations precedence invariant_knapsack knapsack mixed_binary general_linear
neos-555343 easy 3815 3800 15 0 3326 16967 NEOS Server Submission neos-pseudoapplication-15 1512800 decomposition benchmark_suitable aggregations precedence invariant_knapsack equation_knapsack binpacking mixed_binary general_linear

Reference

I don't know too much about this one.

Last Update Aug 28, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint