Submitter Variables Constraints Density Status Group Objective MPS File
Utz-Uwe Haus 5282 20346 6.65103e-04 easy 204.08170701 istanbul-no-cutoff.mps.gz

Exact MILP reformulation using binary decision diagrams to obtain scenario bundles of 2-stage stochastic expected shortest path and expected maximum flow problem with decision dependent scenario probabilities. Notes: * very few binary variables * for each fixing of the binaries a system of equations computing conditioned probabilities remains

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 5282 5110
Constraints 20346 19532
Binaries 30 24
Integers 0 0
Continuous 5252 5086
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000665103 0.000654744
Nonzeroes 71477 65349
Constraint Classification Properties
Original Presolved
Total 20346 19532
Empty 0 0
Free 0 0
Singleton 144 0
Aggregations 5 5
Precedence 0 0
Variable Bound 0 950
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 1 1
Integer Knapsack 0 0
Mixed Binary 20196 18576
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.875061
Constraint % 0.005120 0.0660731 0.0102396 0.875486
Variable % 0.038432 0.1399650 0.0384320 1.383550
Score 0.048552

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 204.0817 204.0817 3.7e-06 8e-07 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to istanbul-no-cutoff in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Status Objective
net12 14115 1603 0 12512 14021 80384 P. Belotti easy 214
snip10x10-35r1budget17 47611 63 0 47548 213801 475334 Utz-Uwe Haus open 73.82346956113*
neos-3759587-noosa 27029 4289 0 22740 72104 318169 Jeff Linderoth neos-pseudoapplication-61 easy 48.334467769
loopha13 19356 18150 0 1206 23758 41809 Hamideh easy 6.40233
neos-3755335-nizao 40938 5226 0 35712 111026 547794 Jeff Linderoth neos-pseudoapplication-61 easy 50.0301565326

Reference

@TechReport{haus-michini-laumanns:17-arxiv,
  author =   {Utz-Uwe Haus and Carla Michini and Marco Laumanns},
  title =    {Scenario Aggregation using Binary Decision Diagrams
                  for Stochastic Programs with Endogenous Uncertainty},
  institution =  {arxiv.org},
  year =     2017,
  type =     {arxiv eprint},
  number =   {arXiv:1701.04055}
}

Last Update Nov 09, 2018 by Gregor Hendel
generated with R Markdown
© 2018 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint