Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 11786 21315 2.37359e-04 easy l2p 5 l2p12.mps.gz

Linearized Constraint Programming models of the MiniZinc Challenges 2012-2016. I should be able to produce versions with indicator constraints supported by Gurobi and CPLEX, however don’t know if you can use them and if there is a standard format. These MPS were produced by Gurobi 7.0.2 using the MiniZinc develop branch on eb536656062ca13325a96b5d0881742c7d0e3c38

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 11786 11350
Constraints 21315 19817
Binaries 10906 10470
Integers 590 590
Continuous 290 290
Implicit Integers 0 16
Fixed Variables 0 0
Nonzero Density 0.000237359 0.000247929
Nonzeroes 59629 55765
Constraint Classification Properties
Original Presolved
Total 21315 19817
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 994 1019
Precedence 3463 2536
Variable Bound 659 689
Set Partitioning 125 183
Set Packing 16 15
Set Covering 0 0
Cardinality 3148 2955
Invariant Knapsack 145 145
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 12765 12275
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.845098
Constraint % 12.7466 12.9754 12.8274 13.7458
Variable % 13.9399 14.6945 14.0792 17.8232
Score 0.663826

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 5 5 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to l2p12 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Status Objective
lectsched-5-obj 21805 21389 416 0 38884 239608 Harald Schilly lectsched easy 24
lectsched-4-obj 7901 7665 236 0 14163 82428 Harald Schilly lectsched easy 4
neos-3654993-kolva 13640 8948 4102 590 16064 54282 Jeff Linderoth neos-pseudoapplication-44 easy Unbounded
loopha13 19356 18150 0 1206 23758 41809 Hamideh easy 6.40233
neos-3709489-menik 48005 31506 15424 1075 59587 199272 Jeff Linderoth neos-pseudoapplication-44 easy Unbounded

Reference

@Inbook{Belov2016,
author="Belov, Gleb
and Stuckey, Peter J.
and Tack, Guido
and Wallace, Mark",
editor="Rueher, Michel",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
isbn="978-3-319-44953-1",
doi="10.1007/978-3-319-44953-1_4",
url="http://dx.doi.org/10.1007/978-3-319-44953-1_4"
}

Last Update Nov 19, 2018 by Gregor Hendel
generated with R Markdown
© 2018 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint