Submitter | Variables | Constraints | Density | Status | Group | Objective | MPS File |
---|---|---|---|---|---|---|---|

Tamas Terlaky | 688 | 1328 | 3.60308e-03 | open | milo | 358152.262193709* | milo-v13-4-3d-4-0.mps.gz |

The models come from structural design optimization where the objective is to minimize the total weight of 2 and 3 dimensional cantilevers. The 2D examples are simpler, and GuRobi can solve the 40_1 and 58_1 instances, while struggles with 75_1. The 3D examples are more challenging. The x_0 and x_1 models are two different modeling of the same identical problems, so their optimal value is the same. The 1_x and 2_x problems are solved by GuRoBi, the 3_x and 4_x are not solved in reasonable time.

Detailed explanation of the following tables can be found here.

Original | Presolved | |
---|---|---|

Variables | 688 | 688 |

Constraints | 1328 | 1168 |

Binaries | 160 | 160 |

Integers | 0 | 80 |

Continuous | 528 | 448 |

Implicit Integers | 0 | 80 |

Fixed Variables | 0 | 0 |

Nonzero Density | 0.00360308 | 0.00389754 |

Nonzeroes | 3292 | 3132 |

Original | Presolved | |
---|---|---|

Total | 1328 | 1168 |

Empty | 0 | 0 |

Free | 0 | 0 |

Singleton | 160 | 0 |

Aggregations | 164 | 164 |

Precedence | 0 | 0 |

Variable Bound | 400 | 400 |

Set Partitioning | 0 | 0 |

Set Packing | 0 | 0 |

Set Covering | 0 | 0 |

Cardinality | 0 | 0 |

Invariant Knapsack | 0 | 0 |

Equation Knapsack | 0 | 0 |

Bin Packing | 0 | 0 |

Knapsack | 0 | 0 |

Integer Knapsack | 0 | 0 |

Mixed Binary | 604 | 524 |

General Linear | 0 | 80 |

Indicator | 0 | 0 |

Available nonzero structure and decomposition information. Further information can be found here.

Decomposed structure of original problem (dec-file)

Decomposed structure after trivial presolving (dec-file)

value | min | median | mean | max | |
---|---|---|---|---|---|

Components | 1.653213 | ||||

Constraint % | 1.11301 | 2.11317 | 1.11301 | 44.3493 | |

Variable % | 1.16279 | 2.27273 | 1.16279 | 47.3837 | |

Score | 0.713683 |

Find solutions below. Download the archive containing all solutions from the Download page.

ID | Objective | Exact | Int. Viol | Cons. Viol | Obj. Viol | Submitter | Date | Description | |
---|---|---|---|---|---|---|---|---|---|

2 | 2 | 358152.3 | 0 | 0 | 0 | Robert Ashford and Alkis Vazacopoulus | 2019-12-18 | Found using ODH|CPlex | |

1 | 1 | 363893.0 | 363893 | 0 | 0 | 0 | - | 2018-10-12 | Solution found during MIPLIB2017 problem selection. |

The following instances are most similar to milo-v13-4-3d-4-0 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance | Status | Variables | Binaries | Integers | Continuous | Constraints | Nonz. | Submitter | Group | Objective | Tags |
---|---|---|---|---|---|---|---|---|---|---|---|

milo-v13-4-3d-3-0 | hard | 516 | 120 | 0 | 396 | 996 | 2456 | Tamas Terlaky | milo | 273238.08563337 | aggregations variable_bound mixed_binary general_linear |

milo-v12-6-r1-58-1 | hard | 4440 | 1500 | 0 | 2940 | 9540 | 25068 | Tamas Terlaky | milo | 634081.411203952 | decomposition aggregations precedence variable_bound mixed_binary general_linear |

milo-v12-6-r1-75-1 | open | 5698 | 1925 | 0 | 3773 | 12243 | 32174 | Tamas Terlaky | milo | 1153880.23371389* | decomposition aggregations precedence variable_bound mixed_binary general_linear |

milo-v12-6-r2-40-1 | easy | 2688 | 840 | 0 | 1848 | 5628 | 14604 | Tamas Terlaky | milo | 326481.14282799 | benchmark decomposition benchmark_suitable aggregations precedence variable_bound mixed_binary general_linear |

supportcase17 | easy | 1381 | 732 | 235 | 414 | 2108 | 5253 | Michael Winkler | – | 1330 | benchmark_suitable aggregations precedence variable_bound set_partitioning mixed_binary general_linear |

`No bibliographic information available`

Last Update Mai 28, 2020 by Gabriel Kressin

generated with R Markdown

© 2020 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Imprint