neos-4335793-snake

numerics aggregations precedence variable_bound set_packing cardinality invariant_knapsack knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Jeff Linderoth 30827 37166 1.12697e-04 open neos-pseudoapplication-44 43.00000000009* neos-4335793-snake.mps.gz

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 30827 30790
Constraints 37166 37137
Binaries 20473 20436
Integers 7865 9106
Continuous 2489 1248
Implicit Integers 0 1241
Fixed Variables 0 0
Nonzero Density 0.000112697 0.000112838
Nonzeroes 129119 129024
Constraint Classification Properties
Original Presolved
Total 37166 37137
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 518 518
Precedence 1218 624
Variable Bound 19612 20214
Set Partitioning 0 0
Set Packing 623 623
Set Covering 1158 0
Cardinality 221 221
Invariant Knapsack 0 1158
Equation Knapsack 0 0
Bin Packing 37 0
Knapsack 0 1158
Integer Knapsack 0 0
Mixed Binary 5939 1761
General Linear 7840 10860
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 3.884965
Constraint % 0.00539 0.0092200 0.00539 1.34367
Variable % 0.00649 0.0129088 0.00649 2.69893
Score 0.705275

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 43 43 0 1e-07 0 - 2018-10-16 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to neos-4335793-snake in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
neos-3656078-kumeu hard 14870 9755 4455 660 17656 59292 Jeff Linderoth neos-pseudoapplication-44 -13172.2 benchmark benchmark_suitable aggregations precedence variable_bound set_packing cardinality invariant_knapsack knapsack mixed_binary general_linear
supportcase17 easy 1381 732 235 414 2108 5253 Michael Winkler 1330 benchmark_suitable aggregations precedence variable_bound set_partitioning mixed_binary general_linear
fastxgemm-n2r7s4t1 easy 904 56 0 848 6972 22584 Laurent Sorber fastxgemm 42 decomposition benchmark_suitable variable_bound set_partitioning set_covering mixed_binary general_linear
fastxgemm-n2r6s0t2 easy 784 48 0 736 5998 19376 Laurent Sorber fastxgemm 230 benchmark decomposition benchmark_suitable variable_bound set_partitioning set_covering mixed_binary general_linear
uccase8 easy 37413 9576 0 27837 53709 214625 Daniel Espinoza uccase 11167.74532 benchmark_suitable aggregations variable_bound set_partitioning invariant_knapsack binpacking knapsack mixed_binary

Reference

No bibliographic information available

Last Update Apr 09, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint