nursesched-sprint-late03

decomposition benchmark_suitable set_partitioning set_packing cardinality invariant_knapsack general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Haroldo Gambini Santos 11690 5032 3.54294e-03 easy nursescheduling 48 nursesched-sprint-late03.mps.gz

Nurse Scheduling Problems from the First International Nurse Rostering Competition - INRC 2010

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 11690 11600
Constraints 5032 4902
Binaries 11670 11580
Integers 20 20
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00354294 0.00366072
Nonzeroes 208410 208160
Constraint Classification Properties
Original Presolved
Total 5032 4902
Empty 0 0
Free 0 0
Singleton 10 0
Aggregations 0 0
Precedence 0 0
Variable Bound 120 0
Set Partitioning 632 672
Set Packing 1410 1490
Set Covering 320 0
Cardinality 360 320
Invariant Knapsack 2080 2400
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 80 0
General Linear 20 20
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.491362
Constraint % 0.1427990 2.65878 2.16238 5.67115
Variable % 0.0862069 3.32759 2.91379 6.98276
Score 0.765997

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 48 48 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to nursesched-sprint-late03 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
nursesched-medium-hint03 hard 34248 34170 78 0 14062 622800 Haroldo Gambini Santos nursescheduling 115 benchmark decomposition benchmark_suitable set_partitioning set_packing cardinality invariant_knapsack general_linear
nursesched-sprint-hidden09 easy 11650 11630 20 0 4872 208050 Haroldo Gambini Santos nursescheduling 338 benchmark_suitable set_partitioning set_packing cardinality invariant_knapsack general_linear
nursesched-sprint02 easy 10250 10230 20 0 3522 204000 Haroldo Gambini Santos nursescheduling 58 benchmark benchmark_suitable set_partitioning set_packing cardinality invariant_knapsack general_linear
comp12-2idx open 11863 11820 43 0 16803 73677 Matias Sørensen coursetimetabling 391* decomposition precedence variable_bound set_partitioning cardinality invariant_knapsack mixed_binary general_linear
comp21-2idx hard 10863 10792 71 0 14038 57301 Matias Sørensen coursetimetabling 74 benchmark decomposition benchmark_suitable precedence variable_bound set_partitioning cardinality invariant_knapsack mixed_binary general_linear

Reference

@Article{Santos2016,
author="Santos, Haroldo G.
and Toffolo, T{\'u}lio A. M.
and Gomes, Rafael A. M.
and Ribas, Sabir",
title="Integer programming techniques for the nurse rostering problem",
journal="Annals of Operations Research",
year="2016",
volume="239",
number="1",
pages="225--251",
issn="1572-9338",
doi="10.1007/s10479-014-1594-6",
url="http://dx.doi.org/10.1007/s10479-014-1594-6"
}

Last Update Jun 24, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint