proteindesign121pgb11p9

benchmark_suitable set_partitioning general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 132672 254 1.557e-02 easy proteindesign 1209 proteindesign121pgb11p9.mps.gz

Linearized Constraint Programming models of the MiniZinc Challenges 2012-2016. I should be able to produce versions with indicator constraints supported by Gurobi and CPLEX, however don’t know if you can use them and if there is a standard format. These MPS were produced by Gurobi 7.0.2 using the MiniZinc develop branch on eb536656062ca13325a96b5d0881742c7d0e3c38

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 132672 132672
Constraints 254 254
Binaries 132594 132594
Integers 78 78
Continuous 0 0
Implicit Integers 0 11
Fixed Variables 0 0
Nonzero Density 0.01557 0.01557
Nonzeroes 524690 524690
Constraint Classification Properties
Original Presolved
Total 254 254
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 66 66
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 188 188
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.826075
Constraint % 0.3937010 0.393701 0.393701 0.393701
Variable % 0.0369332 1.514260 1.809730 1.809730
Score 0.255908

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 1209 1209 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to proteindesign121pgb11p9 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
proteindesign121hz512p9 hard 159145 159054 91 0 301 629449 Gleb Belov proteindesign 1473 benchmark benchmark_suitable set_partitioning general_linear
proteindesign122trx11p8 easy 127326 127248 78 0 254 503427 Gleb Belov proteindesign 1747 benchmark benchmark_suitable set_partitioning general_linear
proteindesign121hz512p19 open 2589931 2589840 91 0 301 10331100 Gleb Belov proteindesign 3405* numerics set_partitioning general_linear
neos-4413714-turia easy 190402 190201 0 201 2303 761756 Jeff Linderoth neos-pseudoapplication-67 45.3701670199998 benchmark benchmark_suitable set_partitioning binpacking mixed_binary
30n20b8 easy 18380 18318 62 0 576 109706 E. Coughlan, M. Lübbecke, J. Schulz 302 benchmark benchmark_suitable precedence set_partitioning general_linear

Reference

@Inbook{Belov2016,
author="Belov, Gleb
and Stuckey, Peter J.
and Tack, Guido
and Wallace, Mark",
editor="Rueher, Michel",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
isbn="978-3-319-44953-1",
doi="10.1007/978-3-319-44953-1_4",
url="http://dx.doi.org/10.1007/978-3-319-44953-1_4"
}

Last Update Jul 31, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint