rococoC11-010100

decomposition aggregations precedence set_partitioning cardinality invariant_knapsack general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
A. Chabrier, E. Danna, C. Le Pape, L. Perron 12321 4010 9.50367e-04 hard rococo 20889 rococoC11-010100.mps.gz

Model for dimensioning the arc capacities in a telecommunication network.

Imported from the MIPLIB2010 submissions.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 12321 10214
Constraints 4010 1902
Binaries 12155 10048
Integers 166 166
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000950367 0.002097230
Nonzeroes 46955 40743
Constraint Classification Properties
Original Presolved
Total 4010 1902
Empty 0 0
Free 0 0
Singleton 2108 0
Aggregations 220 220
Precedence 165 165
Variable Bound 0 0
Set Partitioning 216 216
Set Packing 0 0
Set Covering 0 0
Cardinality 972 972
Invariant Knapsack 108 108
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 221 221
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.214844
Constraint % 0.4731860 0.573500 0.630915 0.630915
Variable % 0.0681663 0.610151 0.886162 0.886162
Score 0.928650

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 20889 20889 0 0 0 Ishibashi Yasumi 2019-06-04 “optimal solution as reported by ParaNUOPT after 32368 seconds using 9 cores in total”
1 20889 20889 0 0 0 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to rococoC11-010100 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
rococoC11-011100 easy 6491 6325 166 0 2367 30472 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 20889 decomposition benchmark_suitable aggregations precedence set_partitioning cardinality invariant_knapsack general_linear
rococoB10-011000 easy 4456 4320 136 0 1667 16517 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 19449 benchmark decomposition benchmark_suitable precedence set_partitioning cardinality general_linear
rococoC12-010001 open 16741 16554 187 0 4636 59832 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 34270* decomposition precedence set_partitioning cardinality knapsack general_linear
rococoC10-001000 easy 3117 2993 124 0 1293 11751 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 11460 benchmark benchmark_suitable precedence set_partitioning cardinality general_linear
qnet1_o easy 1541 1288 129 124 456 4214 MIPLIB submission pool 16029.692681 decomposition aggregations precedence variable_bound set_partitioning cardinality general_linear

Reference

No bibliographic information available

Last Update Jun 24, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint