rococoC11-011100

benchmark decomposition benchmark_suitable aggregations precedence set_partitioning cardinality invariant_knapsack general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
A. Chabrier, E. Danna, C. Le Pape, L. Perron 6491 2367 1.98331e-03 easy rococo 20889 rococoC11-011100.mps.gz

Model for dimensioning the arc capacities in a telecommunication network. Solved by Gurobi 4.5.1 (4 threads) in 66892.47 seconds.

Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 6491 5391
Constraints 2367 1266
Binaries 6325 5225
Integers 166 166
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00198331 0.00384967
Nonzeroes 30472 26274
Constraint Classification Properties
Original Presolved
Total 2367 1266
Empty 0 0
Free 0 0
Singleton 1101 0
Aggregations 220 220
Precedence 165 165
Variable Bound 0 0
Set Partitioning 110 110
Set Packing 0 0
Set Covering 0 0
Cardinality 495 495
Invariant Knapsack 55 55
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 221 221
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.045323
Constraint % 0.710900 0.825793 0.789889 0.947867
Variable % 0.128535 0.899743 0.899743 1.670950
Score 0.899225

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 20889 20889 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to rococoC11-011100 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
rococoC11-010100 open 12321 12155 166 0 4010 46955 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 20889* decomposition aggregations precedence set_partitioning cardinality invariant_knapsack general_linear
rococoB10-011000 easy 4456 4320 136 0 1667 16517 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 19449 benchmark decomposition benchmark_suitable precedence set_partitioning cardinality general_linear
rococoC10-001000 easy 3117 2993 124 0 1293 11751 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 11460 benchmark_suitable precedence set_partitioning cardinality general_linear
qnet1_o easy 1541 1288 129 124 456 4214 MIPLIB submission pool 16029.692681 decomposition aggregations precedence variable_bound set_partitioning cardinality general_linear
qnet1 easy 1541 1288 129 124 503 4622 MIPLIB submission pool 16029.692681 aggregations precedence variable_bound set_partitioning set_covering cardinality general_linear

Reference

@article{ChabrierDannaLePapePerron2004,
 author = {Alain Chabrier and Emilie Danna and Claude Le~Pape and
Laurent Perron},
 issue = {1-4},
 journal = {Annals of Operations Research},
 language = {English},
 pages = {217--239},
 title = {Solving a network design problem},
 volume = {130},
 year = {2004}
}

Last Update Mär 19, 2019 by Gregor Hendel
generated with R Markdown
© 2019 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint