MIPLIB 2010


IP - Pure integer programs (not contained in BP)

[Return to complete MIPLIB 2010 problem list]

Click here for legend of abbreviations and links to subsets

Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN
Easy 30n20b8 B IP 576 18380 109706 7344 11036 302  X X                   X
Hard d10200 C IP 947 2000 57637 1267 733 12430    X           X X      
Open d20200 C IP 1502 4000 189389 819 3181 ?     X           X X      
Easy enlight13 B IP 169 338 962 169 169 71                        X
Easy enlight14 BI IP 196 392 1120 196 196 Infeasible                         X
Easy enlight15 T IP 225 450 1290 225 225 69                        X
Easy enlight16 IT IP 256 512 1472 256 256 Infeasible                         X
Easy enlight9 I IP 81 162 450 81 81 Infeasible                         X
Easy lectsched-1 P IP 50108 28718 310792 482 28236 0X X                 X   X
Open lectsched-1-obj C IP 50108 28718 310792 482 28236 ? X X                 X   X
Easy lectsched-2 P IP 30738 17656 186520 369 17287 0X X                 X   X
Easy lectsched-3 P IP 45262 25776 279967 457 25319 0X X                 X   X
Easy lectsched-4-obj B IP 14163 7901 82428 236 7665 4X X                 X   X
Easy mzzv11 B IP 9499 10240 134603 251 9989 -21718  X X X X X     X X   X X
Easy neos-1224597 P IP 3276 3395 25090 245 3150 -428  X X X   X     X X   X X
Easy neos16 T IP 1018 377 2801 41 336 446  X                 X   X
Easy neos-555424 P IP 2676 3815 15667 15 3800 1.2868e+06  X     X   X   X     X X
Easy neos-686190 B IP 3664 3660 18085 60 3600 6730  X X   X       X       X
Open ns1854840 C IP 143616 135754 856994 474 135280 ?   X       X     X       X
Easy ns1952667 P IP 41 13264 335643 13264 0                    X   X
Hard nu120-pr3 C IP 2210 8601 25986 61 8540 28130X X X     X             X
Easy nu60-pr9 C IP 2220 7350 22176 42 7308 24940X X X     X             X
Easy pw-myciel4 B IP 8164 1059 17779 1 1058 10  X X                   X
Easy rococoB10-011000 C IP 1667 4456 16517 136 4320 19449  X X     X             X
Easy rococoC10-001000 B IP 1293 3117 11751 124 2993 11460  X X     X             X
Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN
Easy rococoC11-011100 CR IP 2367 6491 30472 166 6325 20889X X X     X     X       X
Open rococoC12-111000 C IP 10776 8619 48920 187 8432 ?   X X     X             X
Easy sp98ir B IP 1531 1680 71704 809 871 2.19677e+08  X           X   X   X X
Hard tw-myciel4 C IP 8146 760 27961 1 759 10X X     X       X       X
Easy wachplan T IP 1553 3361 89361 1 3360 -8  X       X     X     X X
Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN

Legend

Problem Status

Easy Easy - instance can be solved within one hour using a commercial solver
Hard Hard - instance has been solved, but is not considered easy
Open Open - optimal solution to instance is unknown

Instance Set List

BBenchmark set
CChallenge set
IInfeasible set
PPrimal set
UUnstable set
R Reoptimize set
T Tree set
XXXL - extra large instances

Problem Type List

BPBinary Program - All variables are binary
IP Integer Program - All variables are integer
MBP Mixed Binary Program - All variables are binary or continuous
MIPMixed Integer Program - Variables can be integer or continuous

Note: The problem types are used to partition the instances. Instances that match more than one type are grouped into the least general set.

Problem Feasibility List

Feasible Problems - a feasible solution is known
Infeasible Problems - the problem was proven to be infeasible
Unknown Feasiblility - no feasible solution is know, but the problem was not proven to be infeasible

Constraint Type Legend

AGGAggregation
VBDVariable Bound
PARSet Partition
PACSet Packing
COVSet Cover
CARCardinality
EQKEquality Knapsack
BINBin Packing
IVKInvariant Knapsack
KNAKnapsack
IKNInteger Knapsack
M01Mixed Binary
GENGeneralAll other constraint types

Note: If a constraint matches more than one type, it is counted for the one with highest priority (lowest number).
Scaling and negation of binary are applied to match constraint types.


Last Update February 28, 2017 by Gerald Gamrath
© 2017 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint