MIPLIB 2010


XXL - extra large set

[Return to complete MIPLIB 2010 problem list]

Click here for legend of abbreviations and links to subsets

Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN
Open hawaiiv10-130 CUX MBP 1388052 685130 183263061 578444 106686 ? X X X X   X     X     X  
Hard in CRX MBP 1526202 1449074 6811639 1489 1447585 58X X                   X  
Open ivu06-big CRXBP 1177 2277736 23125770 2277736 ?     X                    
Easy mspp16 BXBP 561657 29280 27678735 29280 363  X X X X       X X   X  
Easy ns1663818 CXBP 172017 124626 20433649 124626 86  X X X         X X   X  
Open pb-simp-nonunif CXBP 1451912 23848 4366648 23848 ? X X     X       X        
Open rmine21 CXBP 1441651 162547 3514884 162547 ?   X                   X  
Open rmine25 CXBP 2953849 326599 7182744 326599 ?   X                   X  
Open splan1 CUX MIP 572800 1317382 5233840 1978 90810 1224594 ? X X   X   X     X X X X X
Open zib01 CXBP 5887041 12471400 49877768 12471400 ?     X X   X              
Hard zib02 CIXBP 9049868 37709944 146280582 37709944 Infeasible   X X X   X              
Status Name Sets C Rows Cols NZs Int Bin Con Objective AGG VBD PAR PAC COV CAR EQK BIN IVK KNA IKN M01 GEN

Legend

Problem Status

Easy Easy - instance can be solved within one hour using a commercial solver
Hard Hard - instance has been solved, but is not considered easy
Open Open - optimal solution to instance is unknown

Instance Set List

BBenchmark set
CChallenge set
IInfeasible set
PPrimal set
UUnstable set
R Reoptimize set
T Tree set
XXXL - extra large instances

Problem Type List

BPBinary Program - All variables are binary
IP Integer Program - All variables are integer
MBP Mixed Binary Program - All variables are binary or continuous
MIPMixed Integer Program - Variables can be integer or continuous

Note: The problem types are used to partition the instances. Instances that match more than one type are grouped into the least general set.

Problem Feasibility List

Feasible Problems - a feasible solution is known
Infeasible Problems - the problem was proven to be infeasible
Unknown Feasiblility - no feasible solution is know, but the problem was not proven to be infeasible

Constraint Type Legend

AGGAggregation
VBDVariable Bound
PARSet Partition
PACSet Packing
COVSet Cover
CARCardinality
EQKEquality Knapsack
BINBin Packing
IVKInvariant Knapsack
KNAKnapsack
IKNInteger Knapsack
M01Mixed Binary
GENGeneralAll other constraint types

Note: If a constraint matches more than one type, it is counted for the one with highest priority (lowest number).
Scaling and negation of binary are applied to match constraint types.


Last Update February 28, 2017 by Gerald Gamrath
© 2017 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Imprint