8div-n59k11

infeasible set_partitioning cardinality equation_knapsack integer_knapsack general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Sascha Kurz 12287 4114 4.20755e-02 hard 8div Infeasible 8div-n59k11.mps.gz

Projective binary 8-divisible linear block codes A linear block code is called 8-divisible if the weights of its codewords are divisible by 8. It is called projective if there are no duplicate columns in the generator matrix. The possible lengths of 8-divisible linear block codes have been classified except for length n=59, where it is undecided whether such a linear code exists. The possible dimensions satisfy \(10 \le k \le 20\). Instance 8div_n59_kXX contains the corresponding feasibility problem. Projective binary 8-divisible linear block codes occur as hole configurations of so-called partial solid spreads in finite geometry. Binary 4-divisible linear block codes have applications in physics.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 12287 12276
Constraints 4114 4103
Binaries 12282 12271
Integers 5 5
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.0420755 0.0420023
Nonzeroes 2126860 2115590
Constraint Classification Properties
Original Presolved
Total 4117 4106
Empty 0 0
Free 0 0
Singleton 11 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 2047 2047
Set Packing 0 0
Set Covering 0 0
Cardinality 1 1
Invariant Knapsack 0 0
Equation Knapsack 2047 2047
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 3 3
Mixed Binary 0 0
General Linear 8 8
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 3.221414
Constraint % 0.0243724 0.0356652 0.0243724 18.7668
Variable % 0.0406934 0.0600375 0.0406934 32.2292
Score 0.532819

Best Known Solution(s)

No solution available for 8div-n59k11 .

Similar instances in collection

The following instances are most similar to 8div-n59k11 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
8div-n59k10 hard 6143 6138 5 0 2065 539151 Sascha Kurz 8div Infeasible infeasible set_partitioning cardinality equation_knapsack integer_knapsack general_linear
8div-n59k12 hard 24575 24570 5 0 8211 8448017 Sascha Kurz 8div Infeasible infeasible set_partitioning cardinality equation_knapsack integer_knapsack general_linear
neos-3045796-mogo easy 11016 11016 0 0 2226 44442 Jeff Linderoth neos-pseudoapplication-22 -175 binary decomposition set_partitioning set_packing set_covering invariant_knapsack equation_knapsack
neos-952987 hard 31329 31329 0 0 354 90384 NEOS Server Submission neos-pseudoapplication-22 Infeasible infeasible binary set_covering equation_knapsack knapsack
highschool1-aigio hard 320404 319686 718 0 92568 1562168 George Fonseca timetabling 0 benchmark benchmark_suitable aggregations variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack general_linear

Reference

@incollection{ubt_eref40887,
          author = {Daniel Heinlein and Thomas Honold and Michael Kiermaier and Sascha Kurz and Alfred Wassermann},
       booktitle = {The Tenth International Workshop on Coding and Cryptography 2017 : WCC Proceedings},
         address = {Saint-Petersburg},
           month = {September},
           title = {Projective divisible binary codes},
            year = {2017},
             url = {https://eref.uni-bayreuth.de/40887/},
        keywords = {divisible codes; projective codes; partial spreads}
}

@article{heinlein2017classifying,
  title   =  {Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6},
  author  =  {Heinlein, Daniel and Honold, Thomas and Kiermaier, Michael and Kurz, Sascha and Wassermann, Alfred},
  journal =  {Designs, Codes and Cryptography},
  note    =  {arXiv preprint arXiv:1711.06624},
  year    =  {to appear},
  doi     =  {10.1007/s10623-018-0544-8}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint