a2864-99blp

binary set_packing invariant_knapsack

Submitter Variables Constraints Density Status Group Objective MPS File
Daniel Heinlein 200787 22117 4.52141e-03 open selofsubspaces -257* a2864-99blp.mps.gz

Clique problems arising from a selection problem of subspaces in the PG(7,2) with different prescribed variables and numerically instable linear programming relaxation.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 200787 13824
Constraints 22117 20893
Binaries 200787 13824
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00452141 0.00478629
Nonzeroes 20078700 1382400
Constraint Classification Properties
Original Presolved
Total 22117 20893
Empty 0 0
Free 0 0
Singleton 17 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 21590 20384
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 510 509
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.301030
Constraint % 100.0000 100.0000 100.0000 100.0000
Variable % 99.8772 99.8772 99.8772 99.8772
Score 0.001228

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 -257 -257 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to a2864-99blp in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
cdc7-4-3-2 open 11811 11811 0 0 14478 259842 Sascha Kurz -296.0* binary set_packing
cod105 easy 1024 1024 0 0 1024 57344 MIPLIB submission pool -12 benchmark binary benchmark_suitable set_packing
z26 open 17937 17937 0 0 850513 1715613 Daniel Bienstock -1195.0* binary variable_bound set_packing
sorrell7 open 2048 2048 0 0 78848 157696 Toni Sorrell independentset -198.0* binary variable_bound
sorrell3 easy 1024 1024 0 0 169162 338324 Toni Sorrell independentset -16 benchmark binary benchmark_suitable variable_bound

Reference

@article{honold2016classification,
    title   =  {Classification of large partial plane spreads in ${PG}(6, 2)$ and related combinatorial objects},
    author  =  {Honold, Thomas and Kiermaier, Michael and Kurz, Sascha},
    journal =  {Journal of Geometry},
    note    =  {arXiv preprint arXiv:1606.07655},
    year    =  {to appear}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint