acc-tight4

binary benchmark_suitable precedence set_partitioning set_packing set_covering cardinality invariant_knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
J. Walser 1620 3285 3.20819e-03 easy acc-tight 0 acc-tight4.mps.gz

ACC basketball scheduling instance Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 1620 1620
Constraints 3285 3285
Binaries 1620 1620
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00320819 0.00320819
Nonzeroes 17073 17073
Constraint Classification Properties
Original Presolved
Total 3285 3285
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 2025 2025
Variable Bound 0 0
Set Partitioning 261 261
Set Packing 162 162
Set Covering 9 198
Cardinality 36 36
Invariant Knapsack 783 594
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 9 9
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.959041
Constraint % 0.0304414 0.739726 0.0304414 7.12329
Variable % 0.1234570 1.111110 0.1234570 10.00000
Score 0.601613

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 0 0 0 0 0 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to acc-tight4 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
acc-tight5 easy 1339 1339 0 0 3052 16134 J. Walser acc-tight 0 binary benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack mixed_binary
acc-tight2 easy 1620 1620 0 0 2520 15327 J. Walser acc-tight 0 binary benchmark_suitable precedence set_partitioning set_packing set_covering cardinality invariant_knapsack
neos-1330346 easy 2664 2664 0 0 4248 13032 NEOS Server Submission neos-pseudoapplication-49 8 binary decomposition benchmark_suitable aggregations precedence variable_bound cardinality
neos18 easy 3312 3312 0 0 11402 24614 NEOS Server Submission neos-pseudoapplication-49 16 binary decomposition benchmark_suitable precedence variable_bound set_covering invariant_knapsack
physiciansched6-2 easy 111827 109346 0 2481 168336 480259 Pelin Damci-Kurt physiciansched 49324 benchmark decomposition benchmark_suitable precedence variable_bound set_packing set_covering invariant_knapsack binpacking knapsack mixed_binary

Reference

@article{NemhauserTrick1998,
 author = {G. L. Nemhauser and M. A. Trick},
 journal = {Operations Research},
 language = {English},
 number = {1},
 pages = {1--8},
 title = {Scheduling a Major College Basketball Conference},
 volume = {46},
 year = {1998}
}

@misc{Walser1998,
 author = {J. P. Walser},
 note = {http://www.ps.uni-saarland.de/~walser/acc/acc.html},
 title = {Solving the {ACC} Basketball Scheduling Problem with Integer Local
Search},
 year = {1998}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint