atlanta-ip

benchmark benchmark_suitable aggregations precedence variable_bound set_partitioning set_covering cardinality invariant_knapsack binpacking knapsack integer_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
E-Plus, D. Bienstock, A. Bley, R. Wessäly 48738 21732 2.43144e-04 easy 90.009878614 atlanta-ip.mps.gz

Min-cost network dimensioning problems with a finite set of link capacities for each bidirected link, unsplittable shortest path routing, path restoration for single node failures, and routing path length restrictions Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 48738 18476
Constraints 21732 20609
Binaries 46667 17175
Integers 106 97
Continuous 1965 1204
Implicit Integers 0 22
Fixed Variables 93 0
Nonzero Density 0.000243144 0.000487859
Nonzeroes 257532 185763
Constraint Classification Properties
Original Presolved
Total 21732 20609
Empty 1 0
Free 0 0
Singleton 176 0
Aggregations 573 604
Precedence 0 17
Variable Bound 2293 1810
Set Partitioning 782 969
Set Packing 0 0
Set Covering 0 3
Cardinality 5540 5306
Invariant Knapsack 2209 2246
Equation Knapsack 0 0
Bin Packing 0 408
Knapsack 774 659
Integer Knapsack 1 2
Mixed Binary 9202 8443
General Linear 181 142
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.591065
Constraint % 0.0145921 1.13268 0.860937 5.59366
Variable % 0.2543290 2.61250 4.101730 4.84307
Score 0.411046

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 90.00988 90.00988 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to atlanta-ip in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
msc98-ip easy 21143 20237 53 853 15850 92918 E-Plus, D. Bienstock, A. Bley, R. Wessäly 19839497.0058743 numerics aggregations precedence variable_bound set_partitioning cardinality invariant_knapsack knapsack integer_knapsack mixed_binary general_linear
lr1dr02vc05v8a-t360 open 20810 12174 6471 2165 7560 58950 Dimitri Papageorgiou maritime 123046.8149370308* aggregations variable_bound set_partitioning set_packing cardinality mixed_binary general_linear
rococoC11-011100 easy 6491 6325 166 0 2367 30472 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 20889 decomposition benchmark_suitable aggregations precedence set_partitioning cardinality invariant_knapsack general_linear
sing326 easy 55156 40010 0 15146 50781 268173 Daniel Espinoza sing 7753674.85376 benchmark decomposition benchmark_suitable aggregations variable_bound set_partitioning cardinality mixed_binary
sing44 easy 59708 43524 0 16184 54745 281260 Daniel Espinoza sing 8128831.1772 benchmark decomposition benchmark_suitable aggregations variable_bound set_partitioning cardinality mixed_binary

Reference

@techreport{BleyKoch2002,
 author = {Andreas Bley and Thorsten Koch},
 institution = {Zuse Institute Berlin},
 language = {English},
 number = {ZR 02-41},
 title = {Integer programming approaches to access and backbone {IP}-network planning},
 year = {2002}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint