blp-ar98

benchmark decomposition benchmark_suitable variable_bound set_packing equation_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
M. Lübbecke 16021 1128 1.11003e-02 easy blp 6205.2147104 blp-ar98.mps.gz

Railway line planning instance Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 16021 16017
Constraints 1128 1128
Binaries 15806 15806
Integers 0 210
Continuous 215 1
Implicit Integers 0 210
Fixed Variables 4 0
Nonzero Density 0.0111003 0.0111028
Nonzeroes 200601 200597
Constraint Classification Properties
Original Presolved
Total 1128 1128
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 1 1
Set Partitioning 0 0
Set Packing 912 912
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 4
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 215 1
General Linear 0 210
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.960946
Constraint % 0.0886525 0.0886525 0.0886525 0.0886525
Variable % 0.0124836 0.1080590 0.1248360 0.1560450
Score 0.808523

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 6205.215 6205.215 0 0 0 - 2018-10-13 Solution imported from MIPLIB2010.
1 6205.215 6205.215 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to blp-ar98 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
blp-ir98 easy 6097 6031 0 66 486 79152 M. Lübbecke blp 2342.315488 decomposition benchmark_suitable set_packing equation_knapsack mixed_binary general_linear
blp-ic98 easy 13640 13550 0 90 717 191947 M. Lübbecke blp 4491.44758395 benchmark decomposition benchmark_suitable set_packing mixed_binary general_linear
blp-ic97 easy 9845 9753 0 92 923 118149 M. Lübbecke blp 4025.023580799999 decomposition benchmark_suitable set_packing mixed_binary general_linear
neos-3116779-oban easy 5141 5140 0 1 328 20561 Jeff Linderoth neos-pseudoapplication-26 0 decomposition set_packing knapsack general_linear
leo1 easy 6731 6730 0 1 593 131218 COR@L test set 404227536.16 benchmark benchmark_suitable variable_bound set_packing set_covering mixed_binary

Reference

@article{BussieckLindnerLuebbecke2004,
 author = {M. R. Bussieck and T. Lindner and M. E. L{\"u}bbecke},
 journal = {Mathematical Methods of Operations Research},
 number = {2},
 pages = {205-220},
 title = {A Fast Algorithm for Near Optimal Line Plans},
 volume = {59},
 year = {2004}
}

@article{FischettiGloverLodi2005,
 author = {M. Fischetti and F. Glover and A. Lodi},
 journal = {Mathematical Programming},
 pages = {91--104},
 title = {The feasibility pump},
 volume = {104},
 year = {2005}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint