blp-ir98

decomposition benchmark_suitable set_packing equation_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
M. Lübbecke 6097 486 2.67122e-02 easy blp 2342.315488 blp-ir98.mps.gz

Railway line planning instance Imported from the MIPLIB2010 submissions.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 6097 6096
Constraints 486 486
Binaries 6031 6031
Integers 0 64
Continuous 66 1
Implicit Integers 0 64
Fixed Variables 1 0
Nonzero Density 0.0267122 0.0267162
Nonzeroes 79152 79151
Constraint Classification Properties
Original Presolved
Total 486 486
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 420 420
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 1
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 66 1
General Linear 0 64
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.624282
Constraint % 0.2057610 0.205761 0.205761 0.205761
Variable % 0.0492045 0.235518 0.229621 0.295227
Score 0.862162

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 2342.315 2342.315 0 1.2e-05 1.2e-05 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to blp-ir98 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
blp-ar98 easy 16021 15806 0 215 1128 200601 M. Lübbecke blp 6205.2147104 benchmark decomposition benchmark_suitable variable_bound set_packing equation_knapsack mixed_binary general_linear
blp-ic98 easy 13640 13550 0 90 717 191947 M. Lübbecke blp 4491.44758395 benchmark decomposition benchmark_suitable set_packing mixed_binary general_linear
blp-ic97 easy 9845 9753 0 92 923 118149 M. Lübbecke blp 4025.023580799999 decomposition benchmark_suitable set_packing mixed_binary general_linear
neos-3116779-oban easy 5141 5140 0 1 328 20561 Jeff Linderoth neos-pseudoapplication-26 0 decomposition set_packing knapsack general_linear
neos-4409277-trave hard 14363 14362 0 1 7875 204518 Jeff Linderoth neos-pseudoapplication-47 3 variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack mixed_binary

Reference

No bibliographic information available

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint