bnatt400

benchmark binary benchmark_suitable precedence set_covering invariant_knapsack binpacking knapsack

Submitter Variables Constraints Density Status Group Objective MPS File
Tatsuya Akutsu 3600 5614 1.07361e-03 easy bnatt 1 bnatt400.mps.gz

Model to identify a singleton attractor in a Boolean network, applications in computational systems biology. Solved by SCIP 3.0 with SoPlex 1.7.0 in half an hour. A Intel Core2 Extreme CPU X9659 @3.00GHz was used. Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 3600 2003
Constraints 5614 4006
Binaries 3600 2003
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00107361 0.00209621
Nonzeroes 21698 16820
Constraint Classification Properties
Original Presolved
Total 5614 4006
Empty 0 0
Free 0 0
Singleton 1586 0
Aggregations 0 0
Precedence 0 32
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 1614 209
Cardinality 0 0
Invariant Knapsack 400 1778
Equation Knapsack 0 0
Bin Packing 0 383
Knapsack 0 1604
Integer Knapsack 0 0
Mixed Binary 2014 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.482874
Constraint % 0.0499251 0.0520671 0.0499251 0.249626
Variable % 0.0998502 0.2703860 0.2496260 0.748877
Score 0.157314

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 1 1 0 0 0 - 2018-10-11 Solution imported from MIPLIB2010.
1 1 1 0 0 0 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to bnatt400 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
bnatt500 easy 4500 4500 0 0 7029 27203 Tatsuya Akutsu bnatt Infeasible benchmark infeasible binary benchmark_suitable precedence set_covering invariant_knapsack binpacking knapsack
s1234 hard 2945 2945 0 0 8418 44641 Siwei Sun SiweiSun 29 binary precedence set_covering invariant_knapsack binpacking knapsack
neos-5178119-nalagi easy 4167 4068 0 99 6921 74476 Jeff Linderoth neos-pseudoapplication-62 22.73999999763 benchmark_suitable precedence set_partitioning set_packing set_covering cardinality invariant_knapsack knapsack mixed_binary general_linear
supportcase3 easy 4191 4191 0 0 12702 53470 Michael Winkler 0 binary feasibility aggregations precedence variable_bound invariant_knapsack knapsack mixed_binary
circ10-3 open 2700 2700 0 0 42620 307320 M. Winkler 258.0* binary decomposition precedence variable_bound set_partitioning set_packing invariant_knapsack knapsack mixed_binary

Reference

@inproceedings{AkutsuHayashidaTamura2009,
 author = {T. Akutsu and M. Hayashida and T. Tamura},
 booktitle = {Proceedings of The combined 48th IEEE Conference on Decision and
Control and 28th Chinese Control Conference},
 title = {Integer programming-based methods for attractor detection and control
of {B}oolean networks},
 year = {2009}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint