cvrpb-n45k5vrpi

indicator numerics aggregations precedence variable_bound set_partitioning set_packing mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 153202 268835 1.26149e-05 open pb- 775* cvrpb-n45k5vrpi.mps.gz

These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB. To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say $> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt –slvPrf MZN-CPLEX –debug 1 –addOption “–timeout 3 -D fIndConstr=true -D fMIPdomains=false” –useJoinedName “–writeModel MODELS_IND/%s.mps” Alternatively, you can compile individual instance as follows: $> mzn-cplex -v -s -G linear –output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a –timeout 3 -D fIndConstr=true -D fMIPdomains=false –writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 153202 111837
Constraints 268835 227166
Binaries 23625 15924
Integers 1575 1575
Continuous 128002 94338
Implicit Integers 348 524
Fixed Variables 308 0
Nonzero Density 1.26149e-05 1.25924e-05
Nonzeroes 519556 319916
Constraint Classification Properties
Original Presolved
Total 153201 140884
Empty 0 0
Free 0 0
Singleton 572 19098
Aggregations 12798 8970
Precedence 480 32914
Variable Bound 696 33478
Set Partitioning 176 176
Set Packing 176 176
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 88 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 115374 30712
General Linear 22841 15360
Indicator 115634 115634

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components
Constraint %
Variable %
Score

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

## Warning in lapply(df["exactobjval"], as.numeric): NAs introduced by coercion
ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 775 1e+100 0 0 0 Frederic Didier 2020-01-22 Obtained with Google OR-tools using 8 Threads through generating subproblems by fixing part of the current solution and trying to solve them with a sub CP-SAT solver
1 2009 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to cvrpb-n45k5vrpi in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
cvrpa-n64k9vrpi open 312726 48192 2259 262275 550111 1064702 Gleb Belov vrp 2042.0* indicator numerics aggregations precedence variable_bound set_partitioning set_packing mixed_binary general_linear
cvrpp-n16k8vrpi open 18294 2832 531 14931 31615 60544 Gleb Belov vrp 450* indicator numerics aggregations precedence variable_bound set_partitioning set_packing mixed_binary general_linear
cvrpsimple2i easy 4166 648 243 3275 7023 13248 Gleb Belov vrp 34 indicator numerics aggregations precedence variable_bound set_partitioning set_packing mixed_binary general_linear
stoch-vrpvrp-s5v2c8vrp-v2c8i hard 8436 1485 734 6217 13813 26231 Gleb Belov vrp 329.9999999999999 indicator numerics aggregations precedence variable_bound set_partitioning set_packing mixed_binary general_linear
amaze22012-06-28i easy 12691 4376 914 7401 17319 33831 Gleb Belov amaze 0 feasibility indicator numerics aggregations precedence variable_bound set_partitioning cardinality integer_knapsack mixed_binary general_linear

Reference

@article{MZChPhil2010,
year={2010},
journal={Constraints},
volume={15},
number={3},
title={Philosophy of the {MiniZinc} challenge},
publisher={Springer US},
author={Stuckey, P. J. and Becket, R. and Fischer, J.},
pages={307--316},
}
@incollection{BelovEtAl_Lin16,
author="Belov, G.
and Stuckey, P. J.
and Tack, G.
and Wallace, M.",
editor="Rueher, M.",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint