diameterc-msts-v40a100d5i

indicator numerics aggregations precedence variable_bound set_partitioning cardinality invariant_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 14629 21131 1.30329e-04 easy diameterc 729 diameterc-msts-v40a100d5i.mps.gz

These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB. To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say \(> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt --slvPrf MZN-CPLEX --debug 1 --addOption "--timeout 3 -D fIndConstr=true -D fMIPdomains=false" --useJoinedName "--writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual instance as follows:\)> mzn-cplex -v -s -G linear –output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a –timeout 3 -D fIndConstr=true -D fMIPdomains=false –writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 14629 14475
Constraints 21131 20511
Binaries 5611 5531
Integers 5304 5304
Continuous 3714 3640
Implicit Integers 2784 2828
Fixed Variables 80 0
Nonzero Density 0.000130329 0.000131042
Nonzeroes 40288 38906
Constraint Classification Properties
Original Presolved
Total 14859 14311
Empty 0 0
Free 0 0
Singleton 2 0
Aggregations 1440 1440
Precedence 3335 2861
Variable Bound 3330 3402
Set Partitioning 43 43
Set Packing 0 0
Set Covering 0 0
Cardinality 241 241
Invariant Knapsack 602 602
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 3490 3346
General Linear 2376 2376
Indicator 6272 6272

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components
Constraint %
Variable %
Score

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

## Warning in lapply(df["exactobjval"], as.numeric): NAs introduced by coercion
ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 729 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to diameterc-msts-v40a100d5i in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
mrcpspj30-53-3i easy 24220 6020 8938 9262 32618 56796 Gleb Belov mrcpspj 34 indicator numerics aggregations precedence variable_bound set_partitioning invariant_knapsack integer_knapsack mixed_binary general_linear
mrcpspj30-17-10i easy 26381 7386 10901 8094 34490 62166 Gleb Belov mrcpspj 26 indicator numerics aggregations precedence variable_bound set_partitioning invariant_knapsack integer_knapsack mixed_binary general_linear
mrcpspj30-15-5i easy 24376 6192 8921 9263 32659 56963 Gleb Belov mrcpspj 24 indicator numerics aggregations precedence variable_bound set_partitioning invariant_knapsack integer_knapsack mixed_binary general_linear
diameterc-mstc-v20a190d5i easy 10613 5053 4352 1208 19686 38503 Gleb Belov diameterc 414 indicator numerics aggregations precedence variable_bound set_partitioning cardinality invariant_knapsack mixed_binary general_linear
elitserienhandball13i hard 32791 16976 6976 8839 35758 99381 Gleb Belov elitserienhandball 5 indicator numerics aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack mixed_binary general_linear

Reference

@article{MZChPhil2010,
year={2010},
journal={Constraints},
volume={15},
number={3},
title={Philosophy of the {MiniZinc} challenge},
publisher={Springer US},
author={Stuckey, P. J. and Becket, R. and Fischer, J.},
pages={307--316},
}
@incollection{BelovEtAl_Lin16,
author="Belov, G.
and Stuckey, P. J.
and Tack, G.
and Wallace, M.",
editor="Rueher, M.",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
}

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint