elitserienhandball14i

indicator numerics aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 32541 35328 8.58423e-05 hard elitserienhandball 2 elitserienhandball14i.mps.gz

These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB. To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say $> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt –slvPrf MZN-CPLEX –debug 1 –addOption “–timeout 3 -D fIndConstr=true -D fMIPdomains=false” –useJoinedName “–writeModel MODELS_IND/%s.mps” Alternatively, you can compile individual instance as follows: $> mzn-cplex -v -s -G linear –output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a –timeout 3 -D fIndConstr=true -D fMIPdomains=false –writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 32541 31399
Constraints 35328 33040
Binaries 16938 15954
Integers 6938 6818
Continuous 8665 8627
Implicit Integers 2872 3672
Fixed Variables 200 0
Nonzero Density 8.58423e-05 8.79053e-05
Nonzeroes 98685 91195
Constraint Classification Properties
Original Presolved
Total 24514 22286
Empty 0 0
Free 0 0
Singleton 28 60
Aggregations 3680 4184
Precedence 2002 487
Variable Bound 4616 4687
Set Partitioning 2048 1512
Set Packing 860 856
Set Covering 0 10
Cardinality 699 381
Invariant Knapsack 38 18
Equation Knapsack 14 14
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 7942 7520
General Linear 2587 2557
Indicator 10814 10814

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components
Constraint %
Variable %
Score

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

## Warning in lapply(df["exactobjval"], as.numeric): NAs introduced by coercion
ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 2 1e+100 0 0 0 Yuji Shinano 2019-06-11 Solved using FiberXpress
1 4 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to elitserienhandball14i in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
elitserienhandball11i hard 32679 16944 6952 8783 35580 99071 Gleb Belov elitserienhandball 3 indicator numerics aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack mixed_binary general_linear
elitserienhandball13i hard 32791 16976 6976 8839 35758 99381 Gleb Belov elitserienhandball 5 indicator numerics aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack mixed_binary general_linear
elitserienhandball3i hard 32807 16966 6973 8868 35804 99434 Gleb Belov elitserienhandball 4 indicator numerics aggregations precedence variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack equation_knapsack mixed_binary general_linear
mrcpspj30-53-3i easy 24220 6020 8938 9262 32618 56796 Gleb Belov mrcpspj 34 indicator numerics aggregations precedence variable_bound set_partitioning invariant_knapsack integer_knapsack mixed_binary general_linear
diameterc-msts-v40a100d5i easy 14629 5611 5304 3714 21131 40288 Gleb Belov diameterc 729 indicator numerics aggregations precedence variable_bound set_partitioning cardinality invariant_knapsack mixed_binary general_linear

Reference

@article{MZChPhil2010,
year={2010},
journal={Constraints},
volume={15},
number={3},
title={Philosophy of the {MiniZinc} challenge},
publisher={Springer US},
author={Stuckey, P. J. and Becket, R. and Fischer, J.},
pages={307--316},
}
@incollection{BelovEtAl_Lin16,
author="Belov, G.
and Stuckey, P. J.
and Tack, G.
and Wallace, M.",
editor="Rueher, M.",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint