Submitter | Variables | Constraints | Density | Status | Group | Objective | MPS File |
---|---|---|---|---|---|---|---|

Laurent Sorber | 904 | 6972 | 3.58323e-03 | easy | fastxgemm | 42 | fastxgemm-n2r7s4t1.mps.gz |

Naive multiplication of two N by N matrices requires N^3 scalar multiplications. For N=2, Strassen showed that it could be done in only R=7 < 8=N^3 multiplications. For N=3, it is known that 19 <= R <= 23, and for N=4 it is known that 34 <= R <= 49. This repository contains code that generates a mixed-integer linear program (MILP) formulation of the fast matrix multiplication problem for finding solutions with R < N^3 and proving that they are optimal. For a more detailed description, see the accompanying manuscript.

Detailed explanation of the following tables can be found here.

Original | Presolved | |
---|---|---|

Variables | 904 | 904 |

Constraints | 6972 | 6972 |

Binaries | 56 | 56 |

Integers | 0 | 168 |

Continuous | 848 | 680 |

Implicit Integers | 0 | 168 |

Fixed Variables | 0 | 0 |

Nonzero Density | 0.00358323 | 0.00358323 |

Nonzeroes | 22584 | 22584 |

Original | Presolved | |
---|---|---|

Total | 6972 | 6972 |

Empty | 0 | 0 |

Free | 0 | 0 |

Singleton | 0 | 0 |

Aggregations | 0 | 0 |

Precedence | 1428 | 0 |

Variable Bound | 1428 | 2856 |

Set Partitioning | 0 | 84 |

Set Packing | 0 | 0 |

Set Covering | 0 | 33 |

Cardinality | 0 | 0 |

Invariant Knapsack | 0 | 0 |

Equation Knapsack | 0 | 0 |

Bin Packing | 0 | 0 |

Knapsack | 0 | 0 |

Integer Knapsack | 0 | 0 |

Mixed Binary | 4116 | 331 |

General Linear | 0 | 3668 |

Indicator | 0 | 0 |

Available nonzero structure and decomposition information. Further information can be found here.

Decomposed structure of original problem (dec-file)

Decomposed structure after trivial presolving (dec-file)

value | min | median | mean | max | |
---|---|---|---|---|---|

Components | 0.903090 | ||||

Constraint % | 13.2817 | 13.2817 | 13.2817 | 13.2817 | |

Variable % | 11.0619 | 11.0619 | 11.0619 | 11.0619 | |

Score | 0.826874 |

Find solutions below. Download the archive containing all solutions from the Download page.

ID | Objective | Exact | Int. Viol | Cons. Viol | Obj. Viol | Submitter | Date | Description |
---|---|---|---|---|---|---|---|---|

1 | 42 | 42 | 0 | 0 | 0 | - | 2018-10-13 | Solution found during MIPLIB2017 problem selection. |

The following instances are most similar to fastxgemm-n2r7s4t1 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

```
@misc{Sorber2017,
author = {Laurent Sorber and Marc Van Barel},
title = {{A mixed-integer linear program formulation for fast matrix multiplication}},
howpublished = "\url{https://github.com/lsorber/fast-matrix-multiplication/blob/master/latex/fast-matrix-multiplication.pdf}",
day = {30},
month = {April},
year = {2017},
note = "[Online]"
}
```

Last Update Mai 20, 2021 by Philipp Wellner

generated with R Markdown

© 2020 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Imprint