fhnw-sq2

feasibility precedence set_partitioning integer_knapsack general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Simon Felix 650 91 3.32713e-02 hard fhnw-sq 0 fhnw-sq2.mps.gz

Combinatorial toy feasibility problem: Magic square. Reported solved after 46883 seconds with ParaSCIP using 72 cores.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 650 650
Constraints 91 91
Binaries 625 625
Integers 25 25
Continuous 0 0
Implicit Integers 0 25
Fixed Variables 0 0
Nonzero Density 0.0332713 0.0332713
Nonzeroes 1968 1968
Constraint Classification Properties
Original Presolved
Total 103 103
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 4 4
Variable Bound 0 0
Set Partitioning 50 50
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 12 12
Mixed Binary 0 0
General Linear 37 37
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.342423
Constraint % 1.0989 1.51753 1.0989 7.69231
Variable % 4.0000 4.76190 4.0000 16.00000
Score 0.295385

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 0 0 0 0 0 Yuji Shinano 2018-11-01 Found with ParaSCIP using 72 cores

Similar instances in collection

The following instances are most similar to fhnw-sq2 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
fhnw-sq3 hard 2450 2401 49 0 167 7372 Simon Felix fhnw-sq Infeasible infeasible feasibility precedence set_partitioning integer_knapsack general_linear
neos-5125849-lopori easy 8130 8040 90 0 453 20938 Jeff Linderoth neos-pseudoapplication-42 0 feasibility benchmark_suitable aggregations set_partitioning set_packing equation_knapsack general_linear
fiball easy 34219 33960 258 1 3707 104792 MIPLIB submission pool 138 benchmark decomposition benchmark_suitable aggregations precedence set_partitioning general_linear
neos-3004026-krka easy 17030 16900 130 0 12545 41860 Jeff Linderoth neos-pseudoapplication-38 0 benchmark feasibility benchmark_suitable set_partitioning general_linear
no-ip-65059 easy 2232 2187 45 0 2547 13590 Christopher Hojny noip Infeasible infeasible feasibility decomposition benchmark_suitable precedence set_covering general_linear

Reference

No bibliographic information available

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint