ghoulomb4-9-10i

indicator numerics aggregations precedence variable_bound invariant_knapsack integer_knapsack general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 43424 56330 4.82659e-05 easy ghoulomb 44 ghoulomb4-9-10i.mps.gz

These are the instances from MiniZinc Challenges 2012-2016 (see www.minizinc.org), compiled for MIP WITH INDICATOR CONSTRAINTS using the develop branch of MiniZinc and CPLEX 12.7.1 on 30 April 2017. Thus, these instances can only be handled by solvers accepting indicator constraints. For instances compiled with big-M/domain decomposition only, see my previous submission to MIPLIB. To recompile, create a directory MODELS, a list lst12_16.txt of the instances with full paths to mzn/dzn files of each instance per line, and say \(> ~/install/libmzn/tests/benchmarking/mzn-test.py -l ../lst12_16.txt --slvPrf MZN-CPLEX --debug 1 --addOption "--timeout 3 -D fIndConstr=true -D fMIPdomains=false" --useJoinedName "--writeModel MODELS_IND/%s.mps" Alternatively, you can compile individual instance as follows:\)> mzn-cplex -v -s -G linear –output-time ../challenge_2012_2016/mznc2016_probs/zephyrus/zephyrus.mzn ../challenge_2012_2016/mznc2016_p/zephyrus/14__8__6__3.dzn -a –timeout 3 -D fIndConstr=true -D fMIPdomains=false –writeModel MODELS_IND/challenge_2012_2016mznc2016_probszephyruszephyrusmzn-challenge_2012_2016mznc2016_probszephyrus14__8__6__3dzn.mps

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 43424 36802
Constraints 56330 46387
Binaries 15590 12350
Integers 27834 24452
Continuous 0 0
Implicit Integers 12248 12106
Fixed Variables 0 0
Nonzero Density 4.82659e-05 5.38083e-05
Nonzeroes 118062 91858
Constraint Classification Properties
Original Presolved
Total 44082 34281
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 10099 6859
Precedence 6701 221
Variable Bound 12248 15488
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 3342 102
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 98 17
Mixed Binary 0 0
General Linear 11594 11594
Indicator 12248 12248

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components
Constraint %
Variable %
Score

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

## Warning in lapply(df["exactobjval"], as.numeric): NAs introduced by coercion
ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 44 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to ghoulomb4-9-10i in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
mspsphard01i easy 21531 10868 10663 0 32864 59860 Gleb Belov mspsp 35 indicator numerics aggregations precedence variable_bound set_packing invariant_knapsack general_linear
l2p2i easy 38196 13113 24938 145 47653 85208 Gleb Belov l2p 8 indicator numerics aggregations precedence variable_bound set_partitioning set_packing cardinality invariant_knapsack general_linear
gfd-schedulen25f5d20m10k3i easy 30916 14783 14556 1577 47093 88245 Gleb Belov gfd-schedule 5 indicator numerics aggregations precedence variable_bound set_partitioning set_packing cardinality invariant_knapsack equation_knapsack mixed_binary general_linear
mrcpspj30-17-10i easy 26381 7386 10901 8094 34490 62166 Gleb Belov mrcpspj 26 indicator numerics aggregations precedence variable_bound set_partitioning invariant_knapsack integer_knapsack mixed_binary general_linear
gfd-schedulen55f2d50m30k3i easy 90158 40622 42209 7327 129102 260992 Gleb Belov gfd-schedule 6 indicator numerics aggregations precedence variable_bound set_partitioning set_packing cardinality invariant_knapsack equation_knapsack mixed_binary general_linear

Reference

@article{MZChPhil2010,
year={2010},
journal={Constraints},
volume={15},
number={3},
title={Philosophy of the {MiniZinc} challenge},
publisher={Springer US},
author={Stuckey, P. J. and Becket, R. and Fischer, J.},
pages={307--316},
}
@incollection{BelovEtAl_Lin16,
author="Belov, G.
and Stuckey, P. J.
and Tack, G.
and Wallace, M.",
editor="Rueher, M.",
title="Improved Linearization of Constraint Programming Models",
bookTitle="Principles and Practice of Constraint Programming: 22nd International Conference, CP 2016, Proceedings",
year="2016",
publisher="Springer International Publishing",
pages="49--65",
}

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint