Submitter | Variables | Constraints | Density | Status | Group | Objective | MPS File |
---|---|---|---|---|---|---|---|

Toni Sorrell | 2001 | 1500 | 8.44578e-02 | open | supportvectormachine | 18121.63800478* | gsvm2rl11.mps.gz |

Suport vector machine with ramp loss. GSVM2-RL is the formulation found in Hess E. and Brooks P. (2015) paper, The Support Vector Machine and Mixed Integer Linear Programming: Ramp Loss SVM with L1-Norm Regularization

Detailed explanation of the following tables can be found here.

Original | Presolved | |
---|---|---|

Variables | 2001 | 2001 |

Constraints | 1500 | 1500 |

Binaries | 500 | 500 |

Integers | 0 | 0 |

Continuous | 1501 | 1501 |

Implicit Integers | 0 | 0 |

Fixed Variables | 0 | 0 |

Nonzero Density | 0.0844578 | 0.0844578 |

Nonzeroes | 253500 | 253500 |

Original | Presolved | |
---|---|---|

Total | 1500 | 1500 |

Empty | 0 | 0 |

Free | 0 | 0 |

Singleton | 0 | 0 |

Aggregations | 0 | 0 |

Precedence | 500 | 500 |

Variable Bound | 500 | 500 |

Set Partitioning | 0 | 0 |

Set Packing | 0 | 0 |

Set Covering | 0 | 0 |

Cardinality | 0 | 0 |

Invariant Knapsack | 0 | 0 |

Equation Knapsack | 0 | 0 |

Bin Packing | 0 | 0 |

Knapsack | 0 | 0 |

Integer Knapsack | 0 | 0 |

Mixed Binary | 500 | 500 |

General Linear | 0 | 0 |

Indicator | 0 | 0 |

Available nonzero structure and decomposition information. Further information can be found here.

Decomposed structure of original problem (dec-file)

Decomposed structure after trivial presolving (dec-file)

value | min | median | mean | max | |
---|---|---|---|---|---|

Components | 2.699838 | ||||

Constraint % | 0.133333 | 0.133333 | 0.133333 | 0.133333 | |

Variable % | 0.099950 | 0.099950 | 0.099950 | 0.099950 | |

Score | 0.666000 |

Find solutions below. Download the archive containing all solutions from the Download page.

ID | Objective | Exact | Int. Viol | Cons. Viol | Obj. Viol | Submitter | Date | Description |
---|---|---|---|---|---|---|---|---|

1 | 18121.64 | 18121.64 | 0 | 0 | 0 | - | 2018-10-13 | Solution found during MIPLIB2017 problem selection. |

The following instances are most similar to gsvm2rl11 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance | Status | Variables | Binaries | Integers | Continuous | Constraints | Nonz. | Submitter | Group | Objective | Tags |
---|---|---|---|---|---|---|---|---|---|---|---|

gsvm2rl12 | open | 2001 | 500 | 0 | 1501 | 1500 | 253500 | Toni Sorrell | supportvectormachine | 22.12011638092* | numerics precedence variable_bound mixed_binary |

gsvm2rl9 | open | 801 | 200 | 0 | 601 | 600 | 41400 | Toni Sorrell | supportvectormachine | 7438.181167768* | numerics precedence variable_bound mixed_binary |

gsvm2rl5 | hard | 401 | 100 | 0 | 301 | 300 | 10700 | Toni Sorrell | supportvectormachine | 5.42305352523751 | precedence variable_bound mixed_binary |

gsvm2rl3 | easy | 241 | 60 | 0 | 181 | 180 | 4020 | Toni Sorrell | supportvectormachine | 0.33652753 | benchmark_suitable precedence variable_bound mixed_binary |

neos-4960896-besbre | easy | 6149 | 1809 | 0 | 4340 | 14793 | 98690 | Jeff Linderoth | neos-pseudoapplication-59 | Unbounded | numerics precedence variable_bound set_packing mixed_binary |

```
@article{hess2015support,
title={The Support Vector Machine and Mixed Integer Linear Programming: Ramp Loss SVM with L1-Norm Regularization},
author={Hess, Eric J and Brooks, J Paul},
year={2015}
}
```

Last Update Mai 20, 2021 by Philipp Wellner

generated with R Markdown

© 2020 by Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

Imprint