lotsize

benchmark decomposition benchmark_suitable variable_bound set_packing invariant_knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
Dinakar Gade, Simge Kucukyavuz 2985 1920 1.14548e-03 easy 1480195 lotsize.mps.gz

Multi-item lot sizing with service level constraints Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 2985 2985
Constraints 1920 1920
Binaries 1195 1195
Integers 0 0
Continuous 1790 1790
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00114548 0.00114548
Nonzeroes 6565 6565
Constraint Classification Properties
Original Presolved
Total 1920 1920
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 1195 1195
Set Partitioning 0 0
Set Packing 120 120
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 5 5
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 600 600
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.7781512
Constraint % 18.75 18.75 18.75 18.75
Variable % 20.00 20.00 20.00 20.00
Score 0.7500000

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 1480195 1480195 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to lotsize in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
mtest4ma easy 1950 975 0 975 1174 4875 MIPLIB submission pool 52148 decomposition variable_bound set_packing mixed_binary
beavma easy 390 195 0 195 372 975 MIPLIB submission pool 383285 decomposition aggregations variable_bound set_packing mixed_binary
neos-3072252-nete easy 576 144 0 432 432 1292 Jeff Linderoth neos-pseudoapplication-50 11807698 benchmark_suitable variable_bound invariant_knapsack mixed_binary
sp150x300d easy 600 300 0 300 450 1200 MIPLIB submission pool sp_product 69 benchmark decomposition benchmark_suitable aggregations variable_bound mixed_binary
neos-4290317-perth open 54708 1042 0 53666 65580 398380 Jeff Linderoth neos-pseudoapplication-76 3017259.469804598* decomposition numerics aggregations precedence variable_bound mixed_binary

Reference

@techreport{GadeKucukyavuz2010,
 author = {D. Gade and S. K{\"u}{\c{c}}{\"u}kyavuz},
 institution = {Optimization Online},
 number = {http://www.optimization-online.org/DB_HTML/2010/12/2844.html},
 title = {Deterministic lot sizing with Service Levels},
 year = {2010}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint