n9-3

decomposition benchmark_suitable aggregations mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
A. Atamtürk 7644 2364 1.66416e-03 easy nxy-z 14409 n9-3.mps.gz

Capacitated network design problem Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 7644 7644
Constraints 2364 2364
Binaries 0 0
Integers 252 252
Continuous 7392 7392
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00166416 0.00166416
Nonzeroes 30072 30072
Constraint Classification Properties
Original Presolved
Total 2364 2364
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 176 176
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 2020 2020
General Linear 168 168
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.94939
Constraint % 1.01523 1.05561 1.01523 4.56853
Variable % 1.09890 1.13636 1.09890 4.39560
Score 0.91722

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 14409 14409 0 0 0 - 2018-10-13 Solution imported from MIPLIB2010.
1 14409 14409 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to n9-3 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
n6-3 easy 7178 0 222 6956 2760 28268 A. Atamtürk nxy-z 15174.999303 decomposition benchmark_suitable aggregations mixed_binary general_linear
n5-3 easy 2550 0 150 2400 1062 9900 A. Atamtürk nxy-z 8104.999999993999 benchmark decomposition benchmark_suitable aggregations mixed_binary general_linear
n7-3 easy 5626 0 174 5452 2336 22156 A. Atamtürk nxy-z 15425.99999997 decomposition benchmark_suitable aggregations mixed_binary general_linear
n13-3 easy 3472 0 186 3286 1723 13516 A. Atamtürk nxy-z 13385 decomposition benchmark_suitable aggregations mixed_binary general_linear
ger50-17-ptp-pop-3t open 4892 0 540 4352 545 14285 C. Raack ger50 5224.5144* mixed_binary general_linear

Reference

@article{Atamturk2002,
 author = {A. Atamt{\"u}rk},
 journal = {Mathematical Programming},
 pages = {425--437},
 title = {On Capacitated Network Design Cut-Set Polyhedra},
 volume = {92},
 year = {2002}
}

@misc{bcol,
 key = {zzz bcol},
 note = {http://ieor.berkeley.edu/~atamturk/data/},
 title = {{B}erkeley {C}omputational {O}ptimization {L}ab -- {D}ata
{S}ets},
 year = {2010}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint