neos-3581454-haast

decomposition benchmark_suitable precedence variable_bound set_partitioning set_packing invariant_knapsack knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
Jeff Linderoth 8112 17220 6.65595e-04 easy neos-pseudoapplication-14 2295 neos-3581454-haast.mps.gz

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 8112 8112
Constraints 17220 17220
Binaries 7512 7512
Integers 0 0
Continuous 600 600
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000665595 0.000665595
Nonzeroes 92976 92976
Constraint Classification Properties
Original Presolved
Total 17220 17220
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 288 288
Variable Bound 7212 7212
Set Partitioning 48 48
Set Packing 576 576
Set Covering 576 0
Cardinality 0 0
Invariant Knapsack 36 612
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 24
Integer Knapsack 0 0
Mixed Binary 8484 8460
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.113943
Constraint % 8.29849 8.29849 8.29849 8.29849
Variable % 8.33333 8.33333 8.33333 8.33333
Score 0.912834

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 2295 2295 0 0 0 - 2018-10-15 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to neos-3581454-haast in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
neos-5260764-orauea hard 12940 12580 0 360 12304 82620 Hans Mittelmann neos-pseudoapplication-102 82593.16768840607 decomposition variable_bound set_partitioning cardinality binpacking knapsack mixed_binary
neos-1456979 easy 4605 4245 180 180 6770 36440 NEOS Server Submission neos-pseudoapplication-102 176 benchmark decomposition benchmark_suitable variable_bound set_partitioning set_packing cardinality knapsack mixed_binary general_linear
ns1905797 open 18192 17676 4 512 51884 239700 NEOS Server Submission neos-pseudoapplication-102 no_solution aggregations precedence variable_bound set_partitioning cardinality mixed_binary general_linear
neos-3696678-lyvia easy 7683 7516 167 0 9004 30452 Jeff Linderoth neos-pseudoapplication-56 83.74999995899876 decomposition variable_bound set_covering cardinality invariant_knapsack mixed_binary general_linear
neos-5261882-treska hard 2900 2730 0 170 2971 19342 Hans Mittelmann neos-pseudoapplication-102 51614.874 decomposition precedence set_partitioning cardinality binpacking knapsack mixed_binary

Reference

No bibliographic information available

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint