neos-4954274-beardy

binary decomposition variable_bound set_partitioning set_packing set_covering cardinality invariant_knapsack binpacking knapsack

Submitter Variables Constraints Density Status Group Objective MPS File
Jeff Linderoth 12865 17359 6.2726e-04 hard neos-pseudoapplication-62 20946.48 neos-4954274-beardy.mps.gz

Reported solved after 77000 seconds using Gurobi with 32 threads.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 12865 12820
Constraints 17359 17346
Binaries 12865 12820
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000627260 0.000629642
Nonzeroes 140082 140017
Constraint Classification Properties
Original Presolved
Total 17359 17346
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 4 4
Set Partitioning 18 18
Set Packing 3440 3432
Set Covering 20 20
Cardinality 70 70
Invariant Knapsack 2 2
Equation Knapsack 0 0
Bin Packing 3095 3090
Knapsack 9730 10710
Integer Knapsack 0 0
Mixed Binary 980 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.7781512
Constraint % 19.7763 19.8985 19.8051 20.3067
Variable % 19.8986 19.9922 19.8986 20.3665
Score 0.7959990

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 20946.48 20946.48 0 0 0 Hans Mittelmann 2018-11-01 Found using Gurobi with 32 threads

Similar instances in collection

The following instances are most similar to neos-4954274-beardy in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
neos-876808 easy 87268 87268 0 0 85808 682376 NEOS Server Submission neos-pseudoapplication-62 169795.259907 binary decomposition benchmark_suitable aggregations set_packing set_covering invariant_knapsack knapsack mixed_binary
s1234 hard 2945 2945 0 0 8418 44641 Siwei Sun SiweiSun 29 binary precedence set_covering invariant_knapsack binpacking knapsack
circ10-3 open 2700 2700 0 0 42620 307320 M. Winkler 256.0* binary decomposition precedence variable_bound set_partitioning set_packing invariant_knapsack knapsack mixed_binary
bnatt500 easy 4500 4500 0 0 7029 27203 Tatsuya Akutsu bnatt Infeasible benchmark infeasible binary benchmark_suitable precedence set_covering invariant_knapsack binpacking knapsack
bnatt400 easy 3600 3600 0 0 5614 21698 Tatsuya Akutsu bnatt 1 benchmark binary benchmark_suitable precedence set_covering invariant_knapsack binpacking knapsack

Reference

No bibliographic information available

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint