neos-5045105-creuse

integer_knapsack general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Jeff Linderoth 3848 252 2.38301e-02 open neos-pseudoapplication-78 20.5714105876044* neos-5045105-creuse.mps.gz

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 3848 3848
Constraints 252 252
Binaries 0 0
Integers 3780 3828
Continuous 68 20
Implicit Integers 0 48
Fixed Variables 0 0
Nonzero Density 0.0238301 0.0238301
Nonzeroes 23108 23108
Constraint Classification Properties
Original Presolved
Total 252 252
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 24 124
Mixed Binary 40 0
General Linear 188 128
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.698970
Constraint % 4.36508 12.3016 12.3016 20.2381
Variable % 24.55820 24.5582 24.5582 24.5582
Score 0.371221

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 20.57141 20.57143 0 1e-06 0 Peng Lin and Shaowei Cai 2024-10-01 PartiMIP Solver - A Dynamic Partitioning MIP Solver
1 20.57143 20.57143 0 1e-07 0 - 2018-10-16 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to neos-5045105-creuse in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
gt2 easy 188 24 164 0 29 376 MIPLIB submission pool 21165.99999999978 set_packing integer_knapsack general_linear
neos-574665 easy 740 184 64 492 3790 16792 NEOS Server Submission neos-pseudoapplication-78 5761665.2169 decomposition aggregations variable_bound set_covering invariant_knapsack integer_knapsack mixed_binary general_linear
ns1952667 easy 13264 0 13264 0 41 335643 NEOS Server Submission neos-pseudoapplication-78 0 benchmark feasibility benchmark_suitable integer_knapsack general_linear
neos-4736745-arroux easy 6216 1120 5096 0 1827 19281 Jeff Linderoth neos-pseudoapplication-37 247345269.52 decomposition benchmark_suitable precedence set_partitioning set_packing knapsack integer_knapsack general_linear
neos-4738912-atrato easy 6216 1120 5096 0 1947 19521 Jeff Linderoth neos-pseudoapplication-37 283627956.595 benchmark decomposition benchmark_suitable precedence variable_bound set_partitioning set_packing knapsack integer_knapsack general_linear

Reference

No bibliographic information available

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint