neos-952987

infeasible binary set_covering equation_knapsack knapsack

Submitter Variables Constraints Density Status Group Objective MPS File
NEOS Server Submission 31329 354 8.1497e-03 hard neos-pseudoapplication-22 Infeasible neos-952987.mps.gz

Instance coming from the NEOS Server with unknown application Imported from MIPLIB2010. Claimed infeasible by a custom approach employed by Ed Klotz. The custom approach basically consists of 1. Solution of the MIP Farkas alternate system on just the equality constraints of the model 2. Rounding of all integer variables of this solution to their nearest integer. 3. Solution of the remaining MIP after fixing all integer variables to their rounded values

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 31329 31248
Constraints 354 354
Binaries 31329 31248
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00814970 0.00817083
Nonzeroes 90384 90384
Constraint Classification Properties
Original Presolved
Total 354 354
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 177 177
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 168 168
Bin Packing 0 0
Knapsack 9 9
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.250420
Constraint % 0.282486 0.296850 0.282486 0.564972
Variable % 0.537634 0.564972 0.566436 0.566436
Score 0.522462

Best Known Solution(s)

No solution available for neos-952987 .

Similar instances in collection

The following instances are most similar to neos-952987 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
8div-n59k10 hard 6143 6138 5 0 2065 539151 Sascha Kurz 8div Infeasible infeasible set_partitioning cardinality equation_knapsack integer_knapsack general_linear
neos-3045796-mogo easy 11016 11016 0 0 2226 44442 Jeff Linderoth neos-pseudoapplication-22 -175 binary decomposition set_partitioning set_packing set_covering invariant_knapsack equation_knapsack
8div-n59k11 hard 12287 12282 5 0 4114 2126864 Sascha Kurz 8div Infeasible infeasible set_partitioning cardinality equation_knapsack integer_knapsack general_linear
8div-n59k12 hard 24575 24570 5 0 8211 8448017 Sascha Kurz 8div Infeasible infeasible set_partitioning cardinality equation_knapsack integer_knapsack general_linear
neos-820879 easy 9522 9522 0 0 361 72356 NEOS Server Submission neos-pseudoapplication-23 25467.99999999995 binary benchmark_suitable set_partitioning set_covering cardinality knapsack mixed_binary

Reference

@misc{neos,
 key = {zzz neos},
 note = {http://www.neos-server.org},
 title = {{NEOS} {S}erver for {O}ptimization},
 year = {2011}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint