neos5

benchmark benchmark_suitable mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
NEOS Server Submission 63 63 5.07937e-01 easy neos-pseudoapplication-21 15 neos5.mps.gz

Imported from the MIPLIB2010 submissions.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 63 63
Constraints 63 63
Binaries 53 53
Integers 0 0
Continuous 10 10
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.507937 0.507937
Nonzeroes 2016 2016
Constraint Classification Properties
Original Presolved
Total 63 63
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 63 63
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.30103
Constraint % 100 100 100 100
Variable % 100 100 100 100
Score 0.00000

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 15 15 0 0 0 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to neos5 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
seymour1 easy 1372 451 0 921 4944 33549 MIPLIB submission pool 410.76370139 benchmark benchmark_suitable variable_bound set_covering mixed_binary
hanoi5 easy 3862 3862 0 0 16399 39718 M. Winkler 1931 binary variable_bound set_covering
mod008inf easy 319 319 0 0 7 1562 MIPLIB submission pool mod Infeasible infeasible binary knapsack mixed_binary
ramos3 open 2187 2187 0 0 2187 32805 F. Ramos 186.0* binary set_covering
probportfolio hard 320 300 0 20 302 6620 Feng Qiu 16.734246764 invariant_knapsack mixed_binary

Reference

No bibliographic information available

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint