newdano

decomposition benchmark_suitable precedence variable_bound cardinality mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
Daniel Bienstock 505 576 7.50825e-03 easy dano 65.66666666 newdano.mps.gz

Telecommunications applications Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 505 505
Constraints 576 576
Binaries 56 56
Integers 0 0
Continuous 449 449
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00750825 0.00750825
Nonzeroes 2184 2184
Constraint Classification Properties
Original Presolved
Total 576 576
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 56 56
Variable Bound 392 392
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 16 16
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 112 112
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.763428
Constraint % 1.21528 1.36452 1.21528 9.72222
Variable % 1.58416 1.75439 1.58416 11.28710
Score 0.756023

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 65.66667 65.66667 0 0 0 - 2018-10-12 Solution imported from MIPLIB2010.
1 65.66667 65.66667 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to newdano in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
bienst2 easy 505 35 0 470 576 2184 H. Mittelmann 54.59999999999996 decomposition benchmark_suitable precedence variable_bound cardinality mixed_binary
bienst1 easy 505 28 0 477 576 2184 MIPLIB submission pool 46.7499999999999 decomposition benchmark_suitable precedence variable_bound cardinality mixed_binary
danoint easy 521 56 0 465 664 3232 Daniel Bienstock dano 65.6666666666 benchmark_suitable variable_bound cardinality mixed_binary
ns1430538 hard 33616 1680 0 31936 34960 178112 NEOS Server Submission neos-pseudoapplication-76 88 decomposition precedence variable_bound mixed_binary
rout easy 556 300 15 241 291 2431 MIPLIB submission pool 1077.559999999999 decomposition benchmark_suitable variable_bound set_packing integer_knapsack general_linear

Reference

@article{GunlukBienstock1995,
 author = {O. G{\"u}nl{\"u}k and D. Bienstock},
 journal = {Mathematical Programming},
 language = {English},
 pages = {213-237},
 title = {Computational experience with a difficult mixed-integer
multicommodity flow problem},
 volume = {68},
 year = {1995}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint