noswot

benchmark_suitable precedence variable_bound set_packing integer_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
J. Gregory, L. Schrage 128 182 3.15505e-02 easy -41.00000885 noswot.mps.gz

Unknown application Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 128 127
Constraints 182 182
Binaries 75 80
Integers 25 20
Continuous 28 27
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.0315505 0.0316691
Nonzeroes 735 732
Constraint Classification Properties
Original Presolved
Total 182 182
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 8
Variable Bound 45 40
Set Partitioning 0 0
Set Packing 0 1
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 6 5
Mixed Binary 0 27
General Linear 131 101
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.414973
Constraint % 1.64835 1.64835 1.64835 1.64835
Variable % 2.36220 2.42520 2.36220 3.14961
Score 0.402094

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 -41.00000 -41 0.0e+00 0 0 - 2018-10-10 Solution imported from MIPLIB2010.
1 -41.00001 -41 8.9e-06 0 0 - 2018-10-10 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to noswot in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
milo-v12-6-r2-40-1 easy 2688 840 0 1848 5628 14604 Tamas Terlaky milo 326481.14282799 benchmark decomposition benchmark_suitable aggregations precedence variable_bound mixed_binary general_linear
milo-v13-4-3d-3-0 hard 516 120 0 396 996 2456 Tamas Terlaky milo 273238.08563337 aggregations variable_bound mixed_binary general_linear
milo-v13-4-3d-4-0 open 688 160 0 528 1328 3292 Tamas Terlaky milo 358152.2621937089* aggregations variable_bound mixed_binary general_linear
milo-v12-6-r1-58-1 hard 4440 1500 0 2940 9540 25068 Tamas Terlaky milo 634081.4112039516 decomposition aggregations precedence variable_bound mixed_binary general_linear
milo-v12-6-r1-75-1 open 5698 1925 0 3773 12243 32174 Tamas Terlaky milo 1153756.39820567* decomposition aggregations precedence variable_bound mixed_binary general_linear

Reference

@article{BixbyBoydIndovina1992,
 author = {R. E. Bixby and E. A. Boyd and R. R. Indovina},
 issue = {2},
 journal = {SIAM News},
 language = {English},
 pages = {16},
 title = {{MIPLIB}: {A} Test Set of Mixed Integer Programming Problems},
 volume = {25},
 year = {1992}
}

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint