ns1111636

decomposition set_partitioning set_packing invariant_knapsack knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
NEOS Server Submission 360822 13895 1.1338e-04 hard neos-pseudoapplication-67 162 ns1111636.mps.gz

Network routing problem. Solved in June 2013 by CPLEX 12.5.1 with 32 threads in about 102 hours. Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 360822 360822
Constraints 13895 13893
Binaries 13200 13200
Integers 0 0
Continuous 347622 347622
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000113380 0.000113237
Nonzeroes 568444 567644
Constraint Classification Properties
Original Presolved
Total 13895 13893
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 4400
Set Packing 440 440
Set Covering 0 0
Cardinality 4400 0
Invariant Knapsack 11 11
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 11 11
Integer Knapsack 0 0
Mixed Binary 9033 9031
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.612784
Constraint % 2.45447 2.45447 2.45447 2.45447
Variable % 2.49985 2.49985 2.49985 2.49985
Score 0.957246

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 164 164 0 0 0 - 2018-10-10 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to ns1111636 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
dano3mip open 13873 552 0 13321 3202 79655 Daniel Bienstock dano 664.0208333333334* variable_bound cardinality mixed_binary
dano3_5 easy 13873 115 0 13758 3202 79655 Daniel Bienstock dano 576.9249159565619 benchmark benchmark_suitable variable_bound cardinality mixed_binary
dano3_3 easy 13873 69 0 13804 3202 79655 Daniel Bienstock dano 576.34463303 benchmark benchmark_suitable variable_bound cardinality mixed_binary
irish-electricity easy 61728 9888 0 51840 104259 523257 Paula Carroll 3723497.591396 benchmark benchmark_suitable precedence variable_bound invariant_knapsack binpacking knapsack mixed_binary
neos-824661 easy 45390 15640 0 29750 18804 138890 NEOS Server Submission neos-pseudoapplication-93 33 decomposition benchmark_suitable set_partitioning set_packing cardinality binpacking mixed_binary

Reference

@misc{neos,
 key = {zzz neos},
 note = {http://www.neos-server.org},
 title = {{NEOS} {S}erver for {O}ptimization},
 year = {2011}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint