Submitter | Variables | Constraints | Density | Status | Group | Objective | MPS File |
---|---|---|---|---|---|---|---|
Haroldo Gambini Santos | 11690 | 5032 | 3.54294e-03 | easy | nursescheduling | 48 | nursesched-sprint-late03.mps.gz |
Nurse Scheduling Problems from the First International Nurse Rostering Competition - INRC 2010
Detailed explanation of the following tables can be found here.
Original | Presolved | |
---|---|---|
Variables | 11690 | 11600 |
Constraints | 5032 | 4902 |
Binaries | 11670 | 11580 |
Integers | 20 | 20 |
Continuous | 0 | 0 |
Implicit Integers | 0 | 0 |
Fixed Variables | 0 | 0 |
Nonzero Density | 0.00354294 | 0.00366072 |
Nonzeroes | 208410 | 208160 |
Original | Presolved | |
---|---|---|
Total | 5032 | 4902 |
Empty | 0 | 0 |
Free | 0 | 0 |
Singleton | 10 | 0 |
Aggregations | 0 | 0 |
Precedence | 0 | 0 |
Variable Bound | 120 | 0 |
Set Partitioning | 632 | 672 |
Set Packing | 1410 | 1490 |
Set Covering | 320 | 0 |
Cardinality | 360 | 320 |
Invariant Knapsack | 2080 | 2400 |
Equation Knapsack | 0 | 0 |
Bin Packing | 0 | 0 |
Knapsack | 0 | 0 |
Integer Knapsack | 0 | 0 |
Mixed Binary | 80 | 0 |
General Linear | 20 | 20 |
Indicator | 0 | 0 |
Available nonzero structure and decomposition information. Further information can be found here.
Decomposed structure of original problem (dec-file)
Decomposed structure after trivial presolving (dec-file)
value | min | median | mean | max | |
---|---|---|---|---|---|
Components | 1.491362 | ||||
Constraint % | 0.1427990 | 2.65878 | 2.16238 | 5.67115 | |
Variable % | 0.0862069 | 3.32759 | 2.91379 | 6.98276 | |
Score | 0.765997 |
Find solutions below. Download the archive containing all solutions from the Download page.
ID | Objective | Exact | Int. Viol | Cons. Viol | Obj. Viol | Submitter | Date | Description |
---|---|---|---|---|---|---|---|---|
1 | 48 | 48 | 0 | 0 | 0 | - | 2018-10-12 | Solution found during MIPLIB2017 problem selection. |
The following instances are most similar to nursesched-sprint-late03 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.
@Article{Santos2016,
author="Santos, Haroldo G.
and Toffolo, T{\'u}lio A. M.
and Gomes, Rafael A. M.
and Ribas, Sabir",
title="Integer programming techniques for the nurse rostering problem",
journal="Annals of Operations Research",
year="2016",
volume="239",
number="1",
pages="225--251",
issn="1572-9338",
doi="10.1007/s10479-014-1594-6",
url="http://dx.doi.org/10.1007/s10479-014-1594-6"
}