peg-solitaire-a3

benchmark binary benchmark_suitable aggregations variable_bound set_partitioning cardinality binpacking

Submitter Variables Constraints Density Status Group Objective MPS File
Hiroshige Dan ; Koichi Fujii 4552 4587 1.35953e-03 easy pegsolitaire 1 peg-solitaire-a3.mps.gz

Model to solve instance of a board game “Peg solitaire”

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 4552 4199
Constraints 4587 4232
Binaries 4552 4199
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00135953 0.00146965
Nonzeroes 28387 26116
Constraint Classification Properties
Original Presolved
Total 4587 4232
Empty 0 0
Free 0 0
Singleton 37 0
Aggregations 0 13
Precedence 0 0
Variable Bound 0 24
Set Partitioning 35 59
Set Packing 0 0
Set Covering 0 0
Cardinality 1295 1191
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 2945
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 3220 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.491362
Constraint % 2.1991 2.41507 2.1991 8.67817
Variable % 3.0000 3.22403 3.0000 9.72093
Score 0.696953

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 1 1 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to peg-solitaire-a3 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
neos-2328163-agri easy 2236 2236 0 0 1963 12740 Jeff Linderoth neos-pseudoapplication-36 27674 binary decomposition benchmark_suitable set_partitioning set_packing set_covering cardinality invariant_knapsack binpacking knapsack
neos-4333464-siret easy 2731 1363 0 1368 2880 27710 Jeff Linderoth neos-pseudoapplication-58 24.78581995155556 benchmark_suitable variable_bound binpacking mixed_binary
neos-4343293-stony hard 9400 4698 0 4702 10650 55668 Jeff Linderoth neos-pseudoapplication-58 46.38468271624112 variable_bound binpacking mixed_binary
neos-4355351-swalm open 21065 10530 0 10535 21609 371467 Jeff Linderoth neos-pseudoapplication-58 33.45757454008309* variable_bound binpacking mixed_binary
neos-3237086-abava hard 50192 50192 0 0 69472 233552 Jeff Linderoth neos-pseudoapplication-51 0.0 binary feasibility decomposition aggregations variable_bound set_packing set_covering cardinality invariant_knapsack binpacking

Reference

No bibliographic information available

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint