pg5_34

benchmark decomposition benchmark_suitable mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
M. Dawande 2600 225 1.31624e-02 easy -14339.35345 pg5_34.mps.gz

Multiproduct partial shipment model Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 2600 2600
Constraints 225 225
Binaries 100 100
Integers 0 0
Continuous 2500 2500
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.0131624 0.0131624
Nonzeroes 7700 7700
Constraint Classification Properties
Original Presolved
Total 225 225
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 225 225
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.004321
Constraint % 0.888889 0.888889 0.888889 0.888889
Variable % 1.000000 1.000000 1.000000 1.000000
Score 0.880000

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 -14339.35 -14339.35 0 0 3.1e-06 - 2018-10-13 Solution found during MIPLIB2017 problem selection.
1 -14339.35 -14339.35 0 0 0.0e+00 - 2018-10-13 Solution imported from MIPLIB2010.

Similar instances in collection

The following instances are most similar to pg5_34 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
pg easy 2700 100 0 2600 125 5200 M. Dawande -8674.34260712 benchmark decomposition benchmark_suitable mixed_binary
neos-595904 easy 4508 1148 0 3360 2452 22364 NEOS Server Submission neos-pseudoapplication-43 64829.59 decomposition benchmark_suitable set_partitioning mixed_binary
nh97_potential easy 1180 630 328 222 1916 5748 MIPLIB submission pool 1418 benchmark_suitable mixed_binary general_linear
pigeon-08 easy 344 272 0 72 601 5176 Sam Allen pigeon -7000 benchmark_suitable set_partitioning cardinality invariant_knapsack mixed_binary
pigeon-10 easy 490 400 0 90 931 8150 Sam Allen pigeon -9000 benchmark_suitable set_partitioning cardinality invariant_knapsack mixed_binary

Reference

@article{DawandeGavirneniTayur2006,
 author = {M. Dawande and S. Gavirneni and S. Tayur},
 instance = {pg,pg5_34},
 journal = {Operations Research},
 language = {English},
 number = {2},
 pages = {337--352},
 title = {Effective Heuristics for Multiproduct Partial Shipment Models},
 volume = {54},
 year = {2006}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint