piperout-d20

decomposition benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing set_covering invariant_knapsack binpacking knapsack integer_knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Gleb Belov 11961 15562 1.02567e-03 easy piperout 29948 piperout-d20.mps.gz

Pipe routing with flexibility constraints. Instances with _GCM in the name are simple routing

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 11961 10637
Constraints 15562 14139
Binaries 11788 10481
Integers 149 133
Continuous 24 23
Implicit Integers 0 6
Fixed Variables 19 0
Nonzero Density 0.00102567 0.00104929
Nonzeroes 190915 157810
Constraint Classification Properties
Original Presolved
Total 15562 14139
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 247 249
Precedence 6343 6162
Variable Bound 112 116
Set Partitioning 92 3791
Set Packing 19 18
Set Covering 0 1398
Cardinality 4219 0
Invariant Knapsack 4214 2093
Equation Knapsack 0 0
Bin Packing 6 6
Knapsack 18 6
Integer Knapsack 4 4
Mixed Binary 12 22
General Linear 276 274
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.579784
Constraint % 0.0071100 2.38537 2.90689 9.6091
Variable % 0.0187652 2.68673 3.15256 11.2404
Score 0.843210

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 29948 29948 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to piperout-d20 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
piperout-d27 easy 13104 12931 149 24 17470 224457 Gleb Belov piperout 8124 decomposition benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing set_covering invariant_knapsack binpacking knapsack integer_knapsack mixed_binary general_linear
piperout-27 easy 11659 11514 121 24 18442 54662 Gleb Belov piperout 8123.999999999973 benchmark benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing set_covering invariant_knapsack equation_knapsack integer_knapsack mixed_binary general_linear
piperout-08 easy 10399 10245 130 24 14589 44959 Gleb Belov piperout 125054.9999999999 benchmark benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing set_covering invariant_knapsack equation_knapsack integer_knapsack mixed_binary general_linear
piperout-03 easy 9526 9373 129 24 12246 39067 Gleb Belov piperout 74981.99999999999 benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing set_covering invariant_knapsack equation_knapsack integer_knapsack mixed_binary general_linear
satellites2-40 easy 35378 34324 0 1054 20916 283668 He Renjie satellites -19 benchmark benchmark_suitable aggregations precedence variable_bound set_partitioning set_packing cardinality invariant_knapsack knapsack mixed_binary

Reference

@Inbook{Belov2017,
author="Belov, Gleb
and Garcia de la BAnda, Maria
and Czauderna, Tobias
and Wybrow, Michael
and Wallace, Mark",
editor="Rueher, Michel",
title="An Optimization Model for 3D Pipe Routing with Flexibility Constraints",
bookTitle="Principles and Practice of Constraint Programming: 23rd International Conference, CP 2017, Proceedings",
year="2017",
publisher="Springer International Publishing",
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint