pw-myciel4

benchmark_suitable precedence variable_bound set_partitioning general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
Arie Koster 1059 8164 2.0564e-03 easy 9.999999999999996 pw-myciel4.mps.gz

Model to compute the pathwidth of Mycielski-4 instance from DIMACS graph coloring database Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 1059 1036
Constraints 8164 4180
Binaries 1058 1035
Integers 1 1
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.00205640 0.00226049
Nonzeroes 17779 9789
Constraint Classification Properties
Original Presolved
Total 8164 4180
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 506 483
Variable Bound 7590 3630
Set Partitioning 45 45
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 23 22
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.301030
Constraint % 98.3971 98.3971 98.3971 98.3971
Variable % 97.6834 97.6834 97.6834 97.6834
Score 0.022795

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 10 10 0 0 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.
1 10 10 0 0 0 - 2018-10-13 Solution imported from MIPLIB2010.

Similar instances in collection

The following instances are most similar to pw-myciel4 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
neos-3696678-lyvia easy 7683 7516 167 0 9004 30452 Jeff Linderoth neos-pseudoapplication-56 83.74999995899876 decomposition variable_bound set_covering cardinality invariant_knapsack mixed_binary general_linear
tbfp-bigm hard 2406 2404 0 2 35999 74338 Rob Pratt 24.163194443 variable_bound set_partitioning
neos-5041756-cobark easy 60301 60000 0 301 30900 180900 Jeff Linderoth neos-pseudoapplication-12 Unbounded decomposition precedence variable_bound set_packing invariant_knapsack mixed_binary
graphdraw-gemcutter easy 166 112 16 38 474 1420 Cézar Augusto Nascimento e Silva graphdraw 7118.5 benchmark_suitable variable_bound set_partitioning invariant_knapsack mixed_binary general_linear
neos-850681 easy 2594 2479 16 99 2067 37113 NEOS Server Submission neos-pseudoapplication-12 2472 benchmark_suitable aggregations variable_bound set_partitioning set_packing invariant_knapsack general_linear

Reference

No bibliographic information available

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint