rococoC10-001000

benchmark benchmark_suitable precedence set_partitioning cardinality general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
A. Chabrier, E. Danna, C. Le Pape, L. Perron 3117 1293 2.91568e-03 easy rococo 11460 rococoC10-001000.mps.gz

Model for dimensioning the arc capacities in a telecommunication network Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 3117 2566
Constraints 1293 741
Binaries 2993 2442
Integers 124 124
Continuous 0 0
Implicit Integers 0 5
Fixed Variables 0 0
Nonzero Density 0.00291568 0.00535341
Nonzeroes 11751 10179
Constraint Classification Properties
Original Presolved
Total 1293 741
Empty 0 0
Free 0 0
Singleton 552 0
Aggregations 0 0
Precedence 205 205
Variable Bound 0 0
Set Partitioning 66 66
Set Packing 0 0
Set Covering 0 0
Cardinality 264 264
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 206 206
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.875061
Constraint % 0.674764 0.975672 0.674764 1.34953
Variable % 0.230150 1.265820 0.230150 2.64672
Score 0.709993

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 11460 11460 0 0 0 - 2018-10-29 Solution found during MIPLIB2017 problem selection.
1 11460 11460 0 0 0 - 2018-10-13 Solution imported from MIPLIB2010.

Similar instances in collection

The following instances are most similar to rococoC10-001000 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
rococoB10-011000 easy 4456 4320 136 0 1667 16517 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 19449 benchmark decomposition benchmark_suitable precedence set_partitioning cardinality general_linear
rococoC11-011100 easy 6491 6325 166 0 2367 30472 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 20889 decomposition benchmark_suitable aggregations precedence set_partitioning cardinality invariant_knapsack general_linear
qnet1_o easy 1541 1288 129 124 456 4214 MIPLIB submission pool 16029.692681 decomposition aggregations precedence variable_bound set_partitioning cardinality general_linear
qnet1 easy 1541 1288 129 124 503 4622 MIPLIB submission pool 16029.69268099998 aggregations precedence variable_bound set_partitioning set_covering cardinality general_linear
rococoC11-010100 hard 12321 12155 166 0 4010 46955 A. Chabrier, E. Danna, C. Le Pape, L. Perron rococo 20889 decomposition aggregations precedence set_partitioning cardinality invariant_knapsack general_linear

Reference

@article{ChabrierDannaLePapePerron2004,
 author = {Alain Chabrier and Emilie Danna and Claude Le~Pape and
Laurent Perron},
 issue = {1-4},
 journal = {Annals of Operations Research},
 language = {English},
 pages = {217--239},
 title = {Solving a network design problem},
 volume = {130},
 year = {2004}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint