snip10x10-35r1budget17

aggregations variable_bound invariant_knapsack mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
Utz-Uwe Haus 47611 213801 4.66962e-05 hard 72.30862035707088 snip10x10-35r1budget17.mps.gz

Exact MILP reformulation using binary decision diagrams to obtain scenario bundles of 2-stage stochastic expected shortest path and expected maximum flow problem with decision dependent scenario probabilities. Notes: * very few binary variables * for each fixing of the binaries a system of equations computing conditioned probabilities remains

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 47611 47542
Constraints 213801 117774
Binaries 63 44
Integers 0 0
Continuous 47548 47498
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 4.66962e-05 6.52454e-05
Nonzeroes 475334 365323
Constraint Classification Properties
Original Presolved
Total 213801 117774
Empty 0 0
Free 0 0
Singleton 95069 0
Aggregations 23762 23737
Precedence 0 0
Variable Bound 0 1081
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 1 1
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 94969 92955
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.301030
Constraint % 79.8451 79.8451 79.8451 79.8451
Variable % 50.0463 50.0463 50.0463 50.0463
Score 0.398856

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

## Warning in lapply(df["exactobjval"], as.numeric): NAs introduced by coercion
ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
4 72.30862 0 3e-07 0 Hans Mittelmann 2020-01-09 Solved with Gurobi 9.0 using 80 Threads within 21 hours
3 72.30849 0 8e-07 0 Edward Rothberg 2019-12-13 Obtained with Gurobi 9.0
2 72.30869 0 1e-06 0 Robert Ashford and Alkis Vazacopoulus 2019-12-18 Found using ODH|CPlex
1 73.82347 73.82348 0 1e-06 0 - 2018-10-13 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to snip10x10-35r1budget17 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
istanbul-no-cutoff easy 5282 30 0 5252 20346 71477 Utz-Uwe Haus 204.08170701 benchmark benchmark_suitable aggregations variable_bound knapsack mixed_binary
net12 easy 14115 1603 0 12512 14021 80384 P. Belotti 214 benchmark decomposition benchmark_suitable precedence set_packing cardinality invariant_knapsack mixed_binary
neos-5188808-nattai easy 14544 288 0 14256 29452 133686 Jeff Linderoth neos-pseudoapplication-98 0.110283622999984 benchmark decomposition benchmark_suitable aggregations precedence variable_bound set_partitioning cardinality knapsack mixed_binary
neos-691058 easy 3006 1755 0 1251 2667 30837 NEOS Server Submission neos-pseudoapplication-110 296.999999999986 benchmark_suitable set_partitioning cardinality mixed_binary
nsa easy 388 36 0 352 1297 4204 MIPLIB submission pool 120 decomposition benchmark_suitable aggregations mixed_binary

Reference

@TechReport{haus-michini-laumanns:17-arxiv,
  author =   {Utz-Uwe Haus and Carla Michini and Marco Laumanns},
  title =    {Scenario Aggregation using Binary Decision Diagrams
                  for Stochastic Programs with Endogenous Uncertainty},
  institution =  {arxiv.org},
  year =     2017,
  type =     {arxiv eprint},
  number =   {arXiv:1701.04055}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint