sp98ic

binary decomposition benchmark_suitable variable_bound set_packing set_covering mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
J. Goessens, S. v. Hoessel, L. Kroon 10894 825 3.5195e-02 easy sp9 449144758.4 sp98ic.mps.gz

Railway line planning instance Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 10894 10894
Constraints 825 825
Binaries 10894 10894
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.035195 0.035195
Nonzeroes 316317 316317
Constraint Classification Properties
Original Presolved
Total 825 825
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 3 3
Set Partitioning 0 0
Set Packing 624 624
Set Covering 17 17
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 181 181
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 2.797960
Constraint % 0.1212120 0.121212 0.121212 0.121212
Variable % 0.0183587 0.159490 0.174408 0.220305
Score 0.758788

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
2 449144758 449144758 0 0 0 - 2018-10-29 Solution imported from MIPLIB2010.
1 449144758 449144758 0 0 0 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to sp98ic in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
sp97ic easy 12497 12497 0 0 1033 316629 J. Goessens, S. v. Hoessel, L. Kroon sp9 427684487.6799999 binary decomposition benchmark_suitable variable_bound set_packing set_covering mixed_binary
sp97ar easy 14101 14101 0 0 1761 290968 J. Goessens, S. v. Hoessel, L. Kroon sp9 660705645.759 benchmark binary benchmark_suitable variable_bound set_packing set_covering mixed_binary
sp98ar easy 15085 15085 0 0 1435 426148 J. Goessens, S. v. Hoessel, L. Kroon sp9 529740623.2 benchmark binary benchmark_suitable variable_bound set_packing set_covering mixed_binary
n3div36 easy 22120 22120 0 0 4484 340740 R. Meirich nseq 130800 benchmark binary decomposition benchmark_suitable set_packing set_covering mixed_binary
neos-1599274 easy 4500 4500 0 0 1237 46800 NEOS Server Submission neos-pseudoapplication-26 32075.6 binary decomposition set_packing set_covering knapsack

Reference

@article{FischettiLodi2003,
 author = {Fischetti, Matteo and Lodi, Andrea},
 issn = {0025-5610},
 issue = {1},
 journal = {Mathematical Programming},
 keyword = {Mathematics and Statistics},
 pages = {23-47},
 publisher = {Springer},
 title = {Local branching},
 volume = {98},
 year = {2003}
}

@article{GoossensHoeselKroon2004,
 author = {J.-W. Goossens and S. van Hoesel and L. G. Kroon},
 journal = {Transportation Science},
 language = {English},
 number = {3},
 pages = {379--393},
 title = {A Branch-and-Cut Approach for Solving Railway Line-Planning Problems},
 volume = {38},
 year = {2004}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint