stockholm

variable_bound mixed_binary

Submitter Variables Constraints Density Status Group Objective MPS File
Paul Rubin 20644 57346 1.44508e-04 open 120.9999950202855* stockholm.mps.gz

Toll booth placement problem Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 20644 20644
Constraints 57346 57346
Binaries 962 962
Integers 0 0
Continuous 19682 19682
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000144508 0.000144508
Nonzeroes 171076 171076
Constraint Classification Properties
Original Presolved
Total 57346 57346
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 962 962
Set Partitioning 0 0
Set Packing 0 0
Set Covering 0 0
Cardinality 0 0
Invariant Knapsack 0 0
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 56384 56384
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.301030
Constraint % 98.3225 98.3225 98.3225 98.3225
Variable % 95.3401 95.3401 95.3401 95.3401
Score 0.045818

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

## Warning in lapply(df["exactobjval"], as.numeric): NAs introduced by coercion
ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
4 121 1e+100 8.9e-06 0 0 Michael Winkler 2024-07-16 Gurobi 11.0.1 on AMD EPYC 7313P 16-Core Processor with 264075352 kB memory
3 122 0.0e+00 0 0 Mars Davletshin 2023-12-28 The solution was obtained with Huawei OptVerse solver (0.7.0) using neural primal heuristic.
2 125 0.0e+00 0 0 Robert Ashford and Alkis Vazacopoulus 2019-12-18 Found using ODH|CPlex
1 126 0e+00 0.0e+00 0 0 - 2018-10-11 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to stockholm in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
neos-3754224-navua open 150228 3574 0 146654 232387 652974 Jeff Linderoth neos-pseudoapplication-83 157909.0677610051* numerics aggregations precedence variable_bound set_partitioning mixed_binary
eva1aprime5x5opt open 1712 400 0 1312 11929 57162 Yoshihiro Kanno evaprime -17.94807560443689* aggregations variable_bound set_packing mixed_binary
neos-619167 easy 3452 400 0 3052 6800 20020 NEOS Server Submission neos-pseudoapplication-83 1.664893618589958 decomposition numerics precedence variable_bound mixed_binary
eva1aprime6x6opt open 3514 836 0 2678 34872 161558 Yoshihiro Kanno evaprime -16.31528287738903* aggregations variable_bound set_packing mixed_binary
neos-5018451-chiese easy 265713 1222 244 264247 170175 1249955 Jeff Linderoth neos-pseudoapplication-69 -147988824.81 numerics aggregations variable_bound mixed_binary general_linear

Reference

@article{BaiRubin2009,
 author = {Lihui Bai and Paul A. Rubin},
 journal = {Operations Research},
 number = {6},
 pages = {1510--1522},
 title = {Combinatorial {B}enders Cuts for the Minimum Tollbooth Problem},
 volume = {57},
 year = {2009}
}

@inproceedings{BaiStampsHarwoodKollmann2006,
 author = {Lihui Bai and Matthew T. Stamps and R. Corban Harwood and
Christopher J. Kollmann},
 booktitle = {Proceedings of the 2006 Meeting of the Decision Sciences
Institute},
 title = {A Genetic Algorithm for the Minimum Tollbooth Problem},
 year = {2006}
}

Last Update 2024 by Julian Manns
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint