tanglegram6

binary benchmark_suitable set_covering invariant_knapsack

Submitter Variables Constraints Density Status Group Objective MPS File
Falk Hueffner 9182 17712 3.26726e-04 easy huefner 1224 tanglegram6.mps.gz

The NP-hard Balanced Subgraph problem (variant of MaxCut) encoded as ILPs. Real-world instances from two applications from bioinformatics, finding monotone subsystems in gene regulatory networks (https://dx.doi.org/10.1007/s10878-009-9212-2) and finding optimal layouts of tanglegrams (https://dx.doi.org/10.1007/978-3-642-11269-0). Imported from the MIPLIB2010 submissions.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 9182 9182
Constraints 17712 17712
Binaries 9182 9182
Integers 0 0
Continuous 0 0
Implicit Integers 0 0
Fixed Variables 0 0
Nonzero Density 0.000326726 0.000326726
Nonzeroes 53136 53136
Constraint Classification Properties
Original Presolved
Total 17712 17712
Empty 0 0
Free 0 0
Singleton 0 0
Aggregations 0 0
Precedence 0 0
Variable Bound 0 0
Set Partitioning 0 0
Set Packing 0 0
Set Covering 14214 3498
Cardinality 0 0
Invariant Knapsack 3498 14214
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 0
Integer Knapsack 0 0
Mixed Binary 0 0
General Linear 0 0
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 0.845098
Constraint % 0.0056500 3.29155 0.0225836 19.6590
Variable % 0.0326726 6.57990 0.0653452 39.1963
Score 0.120437

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 1224 1224 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to tanglegram6 in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
tanglegram4 easy 56048 56048 0 0 110404 331212 Falk Hueffner huefner 10696 binary benchmark_suitable set_covering invariant_knapsack
toll-like easy 2883 2883 0 0 4408 13224 Falk Hueffner huefner 610 binary benchmark_suitable set_covering invariant_knapsack
vpphard2 easy 199999 199999 0 0 198450 648340 C. Cardonha 81 binary decomposition benchmark_suitable set_partitioning cardinality invariant_knapsack
vpphard easy 51471 51471 0 0 47280 372305 C. Cardonha 5 binary decomposition benchmark_suitable set_partitioning cardinality invariant_knapsack
30_70_45_095_100 easy 10976 10975 0 1 12526 46640 J. Walser 30_70 3 binary decomposition benchmark_suitable precedence variable_bound set_covering mixed_binary

Reference

No bibliographic information available

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint