umts

decomposition benchmark_suitable aggregations precedence variable_bound set_partitioning set_covering cardinality invariant_knapsack knapsack mixed_binary general_linear

Submitter Variables Constraints Density Status Group Objective MPS File
C. Polo 2947 4465 1.73821e-03 easy 30090327.99999997 umts.mps.gz

Telecommunications network model Imported from MIPLIB2010.

Instance Statistics

Detailed explanation of the following tables can be found here.

Size Related Properties
Original Presolved
Variables 2947 1655
Constraints 4465 1884
Binaries 2802 1523
Integers 72 66
Continuous 73 66
Implicit Integers 0 0
Fixed Variables 1 0
Nonzero Density 0.00173821 0.00442556
Nonzeroes 22872 13799
Constraint Classification Properties
Original Presolved
Total 4465 1884
Empty 0 0
Free 0 0
Singleton 1290 0
Aggregations 0 6
Precedence 972 66
Variable Bound 156 145
Set Partitioning 150 143
Set Packing 0 0
Set Covering 1801 1
Cardinality 12 12
Invariant Knapsack 0 1427
Equation Knapsack 0 0
Bin Packing 0 0
Knapsack 0 33
Integer Knapsack 0 0
Mixed Binary 54 21
General Linear 30 30
Indicator 0 0

Structure

Available nonzero structure and decomposition information. Further information can be found here.

value min median mean max
Components 1.278754
Constraint % 1.43312 4.92746 6.10403 7.27176
Variable % 1.68980 5.54885 6.81955 8.14725
Score 0.827248

Best Known Solution(s)

Find solutions below. Download the archive containing all solutions from the Download page.

ID Objective Exact Int. Viol Cons. Viol Obj. Viol Submitter Date Description
1 30090328 30090328 0 0 0 - 2018-10-12 Solution found during MIPLIB2017 problem selection.

Similar instances in collection

The following instances are most similar to umts in the collection. This similarity analysis is based on 100 scaled instance features describing properties of the variables, objective function, bounds, constraints, and right hand sides.

Instance Status Variables Binaries Integers Continuous Constraints Nonz. Submitter Group Objective Tags
neos-3682128-sandon open 7880 7870 10 0 14920 50438 Hans Mittelmann neos-pseudoapplication-10 34666770* aggregations variable_bound set_packing cardinality invariant_knapsack equation_knapsack knapsack integer_knapsack general_linear
tw-myciel4 hard 760 759 1 0 8146 27961 Arie Koster 10 aggregations precedence variable_bound invariant_knapsack general_linear
aligninq easy 1831 1830 0 1 340 15734 MIPLIB submission pool 2712.999999999999 benchmark_suitable invariant_knapsack mixed_binary general_linear
gus-sch easy 5475 2736 2736 3 5984 33135 Alexandra M. Newman -1167 decomposition aggregations precedence variable_bound set_packing set_covering cardinality invariant_knapsack integer_knapsack mixed_binary general_linear
comp08-2idx easy 11554 11487 67 0 12536 51608 Matias Sørensen coursetimetabling 37 decomposition benchmark_suitable precedence variable_bound set_packing cardinality invariant_knapsack mixed_binary general_linear

Reference

@article{FischettiLodi2003,
 author = {Fischetti, Matteo and Lodi, Andrea},
 issn = {0025-5610},
 issue = {1},
 journal = {Mathematical Programming},
 keyword = {Mathematics and Statistics},
 pages = {23-47},
 publisher = {Springer},
 title = {Local branching},
 volume = {98},
 year = {2003}
}

@techreport{Polo2002,
 author = {C. Polo},
 institution = {Testi di laurea in Ingegneria Informatica, Universitit\`a degli Studi di Padova},
 language = {Italian},
 title = {Algoritmi Euristici per il Progetto Ottimo di una Rete di
Interconnessione},
 year = {2002}
}

Last Update 2024 by Mark Turner
generated with R Markdown
© by Zuse Institute Berlin (ZIB)
Imprint